
A-AI61 556 Sin (AUTOMATED INTERACTIVE S71MULATION MODELING SYSTEM) Vq
VAX VERSIO USER'.. (U) HUGHES AIRCRAFT CO FULLERTON CA

GRUN SYSTEMS GROUP S KNEEBURG FEB 95 ESO-TR-85-12?
UNCLASSIFIED 3 i5-8 -C59FG %o M

smmhmhohhEEEE
I fflffl.flollll

m~~~EEhhEhI

-6

A~. III W.2

JuN 125 114 111.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL IUQEAVj OF STANADS -93- A

. . .

.. -' •

.|

ESD-TR-85-127

AISIM VAX VERSION USER'S MANUAL

S. KNEEBURG

AD-A161 556
Hughes Aircraft Company
Ground Systems Group
P.O. Box 3310
Fullerton, CA 92634

February 1 985

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

DTIC
NOV 2 1 1985

Prepared for

"'/ ELECTRONIC SYSTEMS DIVISION
SAIR FORCE SYSTEMS COMMAND

C DEPUTY FOR ACQUISITION LOGISTICS AND TECHNICAL OPERATIONS
1 HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

b5 II 18 15 6
.. ,

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data i 's not to be regarded by
implication or otherwise as in any manner licensing the harder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

N. ANN KUO, 2Lt, USAFWILA L
Project Manager, program Manager,
Requiremtents Analysis Computer Resource Management

Technology

FOR THE COMMANDER

Director, Computer Systems Engineering
Deputy for Acquisition Logistics

and Technical operations

UNCLASSIFIED

SIECU04ITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION It> RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2. SECURITY CLASSIFICATION kUTHORITY 3 OISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE;

2b DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION ,JNLII "ITD.

A PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-85-1 27
6 ,AME OF PE'RFORMING ORGANIZATION b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

6lHUGHES AIRCRAFT COMPANY If applicable) COMPUTER RESOURCE MANAGEMENT

GROUNC SYSTEMS CROUP TECHNOLOGY n1ROGPAt', DEPUTY FOR (OVIE.

6c. ADDRESS (Cit. State and ZIP Code) 7b. ADDRESS (City. Slate and ZIP Code)
P. 0. BOX 3310 ELECTRONIC SYSTEMS DIVISION (AFSC)

FULLERTON, CA 92634 HANSCOM AFB, MA 01731

am NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

COMPUTER RESOURCE (OVER) ESD/ALSE F33615-81-C-5098

Sc ADDRESS iCity. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

ELECTRONIC SYSTEMS DIVISION (AFSC) PROGRAM PROJECT TASK WORK UNIT

HANSCOM AFB, MA C1731 ELEMENT NO. NO NO. NO.

1 1 TITLE (Include Security Clauificatlonli

AISIM1 VAX VERSION UTSER'S MANUTAL (U) 64740r 2522

12. PERSONAL AUTHOR(S)

S. KNEEBURG
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo.. Day) 15, PAGE COUNT

F' INAL FROM _ TO 1985 FEBRUARY 306
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TIRMS (Continue on rtuerse if neeexa-j and identify by block number)

FIELD GROUP SUB GR AISI . DESIGN PROCESSES SI'111LATION MODELING

ARCHITECTURE

19 ABSTRACT (Continue on reerse if necesaar) and identify by block number)

THIS DOCUMENT IS THE USER'S MIANUAL FOR THE AUTOMATED INTERACTIVE SIMULATION

MODELING SYSTEM (AISIM) ,
THIS MANUAL PROVIDES TH USER WITH A COMPREUENSI"E GUIDE FOR USING THIS

SYSTEM TO PERFORM HIGH LEVEL DISCRETE-EVENT SIMULATION OF COMPUTER-BASED

2 Y 2 T EM S.

20. OISTRIBUTION/AVAILA8ILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO 3 SAME AS RPT. O TIC USERS 0 UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
(Include Area Code)

DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFInD
SECURITY CLASSIFICATION OF THIS PAGE

• ' .' *"• . ' ".. . . ."" .".'. " ' " .' " .' ' '....''""'. .. '''''"""". .. " . ."" J %" "". ..""".. .. ."""-,..

I rN7T T FT Rl

SEC URI TY CLASSIFICATION OF THIS PAGE

7a. NAME OF MONITORING ORGANIZATION (CONTINUED)

ACQUISITION LOGISTICS AND TECHNICAL OPERATIONS

~3a. NP.ME Or FUNDING/SPONSORING ORGANIZATION (CONTINUED)

MlANAGEMIENT TECHNOLOGY PROGPAM, DrPUTY FOR ACQUISITION LOGISTICS

AND TECHNICAL OPERATIONS

UNCLAssTPTrn

SECURITY CLASSIFICATION OF THIS PAGE

ACKNOWLEDGEMENTS

This manual was prepared by Hughes Aircraft Company under
contract # F33615-81-C-5098. The work was sponsored by the
Computer Engineering Applications Division (ALSE), Deputy for
Acquisition Logistics and Technical Operations of the Electronic
Systems Division (ESD) of the United States Air Force, Hanscom
AFB, MA 01731. Funding for the effort was provided by the Air
Force Computer Resource Management Technology Program, Program
Element 64740F.

Program Element 64740F is the Air Force engineering development
program established to develop and transfer into active use the
technology, tools, and techniques needed to cope with the
explosive growth in Air Force systems that use computer
resources. The goals of the Program are to:

(a) Provide for the transition of computer system
technology developments in laboratories, industry, and
academia to Air Force systems;

(b) Develop and apply software acquisition management

techniques to reduce life cycle costs;

(c) Provide improved software design tools;

(d) Address the various problems associated with
computer security;

(e) Develop advanced software engineering tools,
techniques, and systems;

(f) Support the implementation of high order
languages, e.g. Ada;

(g) Address human engineering for computer systems;
and

(h) Develop and apply computer simulation techniques
for the acquisition process. Accession For

NTIS GRA&I
DTIC TAB
Unannoi-c ed
JUstifiC:i r,, ..-

Av~q I

Dist

iii

ALEOF -CNTENTS

Sect ion Page

1. INTRODUCTION 1-1

1.1 PURPOSE AND SCOPE 1-1
1.2 ORGANIZATION 1-1
1.3 DOCUMENTATION CONVENTIONS 1-1
1.4 APPLICABLE DOCUMENTS o...............1-3

2. AISIM CONC~EPTS...................................... ... 2-1
2.1 CHARACTERISTICS OF SYSTEM1S MODELED BY AISIM......... 2-1
2.2 MODELING ... 2-2
2.3 DESIGNING MODELS.. 2-2
2.4 CONSTRUCTING AN AISIM MODEL 2-3

2.4.1 Charting aPaper Mod......................2-3
2.4.2 Defining the AISIM Model....................... 2-4

2.5 AISIM MODELING ENTITIES o..........-.......2-4

3. AISIM ENTITIES AND OTHER MODELING CONSTRUCTS 3-1
3.1 SCENARIO o..................3-2
3.2 LOADo..........................3-4
3.3 ITEMo......................................3-7
3.4 USER DEFINED) QUEUES o...............................3-9
3.5 SYSTEM~ DEFINED QUEUES 3-11

3.5.1 States Associated with Resources o.........3-11
3.5o2 Cross Reference Sets 3-12

3.6 RESOURCE 3-13
3.7 ACTION o..... o.............. o. 3-16
3.8 PROCESS... 3-17
3.9 PRIMITIVES........o....................... 3-21

3.9.1 ACrION..... o................................. 3-24
3.9.2 AE.LOC 3-26
3.9.3 ASSIGN 3-27
3.9.4 BRANCH......................3-29
3.9.5 CALL.......................3-30
3.9.6 COMPARE 3-32
3.9.7 CREATE......................3-34
3.9.8 DEAEJLOC....................... 3-35
3.9.9 DESTROY...................ose 3-36
3.9.10 ENTRY o..... 3-37
3.9.11 EVAL.................... 3-38
3.9o12 FILE- o-.. oese 3-40
3.9.13 FIND.................... 3-41
3.9.14 LOCK..........................oooo. 3-42
3o9.15 LOOP......................................3-43
3.9.16 PRODo 3-44
3.9.17 REM1OVEo................3-45
3.9.18 RESET.................. 3-46
3.9o19 RESUMEo.......o.....o..... o.... : 3-47
3.9.20 SEND - 3-48

3.9.21 SUSPEND 3-49
3.9.22 TEST.......................3-50

V%

Sect ion Page

3.9.23 TRACE 3-51
3.9.24 UNLOCK3-53
3.9.25 WAIT .. 3-54

3.10 LEGAL PATH TABLE - NODE - LINK 3-55

3.11 TABLES ... 3-57
3.11.1 Discrete Tables 3-57

3.i1.2 Continous Tables 3-57
3.11.3 Alphanumeric Tables 3-57

3.12 ATTRIBUTES ... 3-59
3.13 CONSTANTS AND GLOBAL VARIABLES 3-60
3.14 LOCAL VARIABLES 3-62
3.15 ALPHA LITERALS 3-64
3.16 KEYWORDS .. 3-65
3.17 MESSAGE ROUTING SUBMODEL 3-67

4. AISIM SYSTEM OVERVIEW AND SYSTEM INITIALIZATION 4-1

4.1 REACHING THE AISIM READY LEVEL 4-3

5. AISIM READY LEVEL ... 5-1
5.1 INITIATING AN ANALYSIS SESSTON 5-3
5.2 BACKING UP A DATABASE 5-5
5.3 CHANGING THE CURRENT PARAMETERS 5-6
5.4 DELETING PROJECT FILES 5-7
5.5 INITIATING A DESIGN SESSION 5-8
5.6 VIEWING OUTPUT REPORTS 5-9
5.7 RETURNING T0 VAX/VMS READY LEVEL 5-10
5.8 CREATING A MODEL LISTNG 5-11
5.9 HARDCOPY OUTPUT OF THE PROCESS FLOCHARTS 5-13
5.10 OBTAINING HELP FROM THE SYSTEM 5-14
5.11 EXERCISING THE LIBRARY FACILITY 5-15
5.12 LISTING THE CURRENT OPTIONS 5-16
5.13 LISTING THE COMMAND PROCEDURE LINES o 5-17
5.14 DISABLE THE LISTON OPTION 5-18
5.15 DISABLE AISIM MESSAGES 5-19
5.16 DISABLE MSGOFF FEATURE 5-20
5.17 PRINTING OUTPUT REPORTS 5-21

5.18 INITIATING A REPLOT SESSION 5-22
5.19 RESTORING A DATABASE

(AFTER A CATASTROPHE HAS OCCURRED) 5-23

6. DESIGN USER INTERFACE (DUI) 6-1
6.1 DUI COMMAND SUMMARY 6-5

6.1.1 DUI COMMAND: ARCH 6-6
6.1.2 DUI COMMAND: COPY 6-7
6.1.3 DUI COMM4AND: DELETE 6-8
6.1.4 DUT COMt1AND: EDIT o 6-9
6.1.5 DUI COMMAND: END 6-10
6.1.6 DUI COMMAND: HELP 6-11
6.1.7 DUI COMMAND: LIST 6-12
6.1.8 DUI COMMAND: SAVE 6-13
6.1.9 Termination of a DUI Session 6-14

6.2 PROCESS EDITOR INTERFACE (PEI) 6-15
6.2.1 Use of the PEI 6-15
6.2.2 PEI COMMAND: BOTOM 6-17

vi

Sect ion Page

6.2.3 PEI COMIMAND: CHANGE 6-18
6.2.4 PEI COMMAND: DELETE 6-19
6.2.5 PEI COMMAND: DOWN 6-20
6.2.6 PEI COMMAND: DRAW 6-21
6.2.7 PET COMMAND: END 6-22
6.2.8 PEI COMMAND: HELP 6-23
6..9 PEI COMMAND: HOLD 6-24
6.2.10 PEI COMMAND: MENU 6-25
6.2.11 PEI CCMWAND: NODRAW 6-26
6.2.12 PEI CCOMMAND: PLACE 6-27
6.2.13 PEI COMMAND: REDRAW 6-28
6.2.14 PEI COMMAND: TOP 6-29
6.2.15 PEI COMMAND: UP 6-30
6.2.16 Terminating a PEI Session 6-31

6.3 ARCHITECTURE DESIGN EDITOR (ADE) 6-32
6.3.1 Concepts For Using ADE 6-32
6.3.2 Use of the ADE 6-34
6.3.3 ADE Symbols 6-36
6.3.4 ADE COMMtAND: CHANGE 6-37
5.3.5 ADE CCMMAND: CONNECT 6-38
6.3.6 ADE COMMAND: DEFINE 5-40
6.3.7 ADE Ct'TIAND: DELELTE 6-43
6.3.8 ADE COMMAND: DRAW 6-44
6.3.9 ADE COMMAND: END 6-45
6.3.10 ADE COMMAND: LIST.......................... .6-46
6.3.11 ADE COMMtAND: MOVE 6-47
6.3.12 ADE COMMAND: NODRAW 6-48
6.3.13 ADE COMM AND: PLACE 6-49
6.3.14 ADE COMMAND: RECON 6-50
6.3.15 ADE COtMMAND: REDRAW 6-51
6.3.16 ADE COMM"AND: SAVE 6-52
6.3.17 ADE COMMAND: WINDOW 6-53
6.3.15 Termination of an ADE Session 6-54

7. ANALYSIS USER INTERFACE (AUI)7-1
7.1 AUI COMMAND: CANBREAK 7-6
7.2 AUI COMMAND: DEFPLOT 7-7
7.3 AU! COMMAND: DELETE..................................-11
7.4 AUI COMMAND: EDIT 7-12
7.5 Au COMM•AND: END 7-13
7.6 AUI COMMAND: GET 7-14
7.7 AUI COMMAND: GO. 7-15
7.8 AUI COMMAND: HELP 7-16
7.9 AUI COMMAND: INFRES 7-17
7.10 AUI COMMAND: LIST o 7-18
7.11 AUI COMMAND: LISTVAL . o 7-19
7.12 AUI COMMAND: PLOT 7-20
7.13 AUI COMMAND: SAVE....................................7-22
7.14 AUI COMMAND: SETBREAK 7-23
7.15 TERMINATION OF AN AUI SESSION 7-24

8. REPLOT USER INTERFACE (RUI) 8-1
8.1 RUI COMMAND: CLEAR.............. 8-3
8.2 RUI COMMAND: DELETE8-4

vii

.

Section Page

8.3 RUI COMMAND: ED 8-5
8.4 RUI COMMAND: GET 8-6
8.5 RUI COMMAND: LIST 8-7
8.6 RUI COMMAND: PLOT 8-8
8.7 RUI COMM.AND: SAVE 8-9

9. HARDCOPY USER INTERFACE (HUI) 9-1

10. LIBRARY USER INTERFACE (LUI) 10-1
10.1 LUI COMMAND: CHECKIN 10-4
10.2 LUI COMMlAND: CHECKOUT 10-5

10.2.1 CO COM1M AND: DELETE 10-7
10.2.2 CO CO4MMAND: END 10-8
10.2.3 CO COMMMIAND: EXTRACT 10-9
10.2.4 CO COMMMAND: HELP 10-10
10.2.5 CO COMMMAND: LIST 10-11

10.3 LUI COMMAND: CONVERT 10-12
10.4 LUI COMMAND: MERGEIN 10-13

10.4.1 MI COMMMAND: END 10-16
10.4.2 M! COMMAND: HELP 10-17
10.4.3 MI COMMMAND: IGNORE 10-18
10.4.4 MI COMMMAND: INFO 10-19
10.4.5 MI COMMMAND: RENAME 10-20
10.4.6 MI COMMMAND: REPLACE 10-21

10.5 LUI COCMMAND: MEIRGEOUT 10-22
10.5.1 MO COM44AND: END 10-24
10.5.2 MO COMMAND: HELP 10-25
10.5.3 MO COMMAND: LIST 10-26
10.5.4 MO COMM]1AND: SELECT 10-27

11. AISIM SIMULATION REPORTS 11-1
11.1 INTERACTIVE RESULTS AND HOW TO OBTAIN THEM 11-1
11.2 REPORTS RESULTS AND HOW TO OBTAIN THEM 11-2

11.2.1 Constant Report 11-8
11.2.2 Variable Report 11-9
11.2.3 Item Report 11-11
11.2.4 Resource Reoort 11-12
11.2.5 Action Report 11-14
11.2.6 Queue Report 11-16
11.2.7 Process Report 11-18

11.3 COMMANDS RELEVANT TO VIEWING OUTPUT REPORTS 11-21
11.3.1 TOP, BOTTOM 11-21
11.3.2 UP, DOWN 11-21
11.3.3 FIND .. 11-21
11.3.4 LIST .. 11-22

APPENDIX A OPERATIONAL PROCEDURES AND IMPORTANT INFORMATION A-I
A.1 IMPORTANCE OF DATABASE BACKUP AND ALLOCATION A-I
A.2 ABNORMAL TERMINATION OF A DUI OR AUI SESSION A-I
A.3 AISIM PLOTS .. A-2
A.4 PRODUCING HARDCOPIES OF THE TERMINAL DISPLAY A-3
A.5 EXECUTING SIMULATION RUNS AS BATCH JOBS A-4
A.6 RANDOMNESS IN RESULTS A-8

viii

','",-T'.-",-[',-:'.-b<.-:'~~~~~~~~~~~.L-, ' ' .''<- .-" <. . :." ..-.. '.-. <......-. -..

Section Page

APPENDIX B AISIM ERRORS ... B-I

APPENDIX C GLOSSARY ... C-I

APPENDIX D MESSAGE ROUTING SUBMODEL D-1

i

ix

LIST OF ILLUSTRATIONS

FIGURE PAGE

2-1 AISIM Entity Relationships 2-4
3-1 Form for the Secnario Entity 3-2
3-2 Form for the.Load Entity................................. 3-4
3-3 Form for the Item Entity................................. 3-7
3-4 Form for the Queue Entity 3-10
3-5 Resource States.. 3-12
3-6 Form for the Resource Entity 3-14
3-7 Form for the Action Entity 3-16
3-8 Initial Form for the Process Entity 3-18
3-9 Form for an Item Passing Process 3-18
3-10 Form for Parameter Passing Process 3-19
3-11 Sample Process Diagram................................... 3-20
3-12 Graphical Representations of Process Primitives3-23
3-13 Form for an ACTION Primitive 3-24
3-14 Form for the ALLXC Primitive 3-26
3-15 Form for the ASSIGN Primitive 3-28
3-16 Form for the BRANCH Primitive 3-29
3-17 Form for the CALL Primitive 3-31
3-18 Form for the COMPARE Primitive 3-33
3-19 Form for the CREATE Primitive 3-34
3-20 Form for the DEALLOC Primitive 3-35
3-21 Form for the DESTROY Primitive 3-36
3-22 Form for the ENTRY Primitive 3-37
3-23 Form for the EVAL Primitive 3-39
3-24 Form for the FILE Primitive 3-40
3-25 Form for the FIND Primitive 3-41
3-26 Form for the LOCK Primitive 3-42
3-27 Form for the L.OOP Primitive............................. 3-43
3-28 Form for the PROB Primitive 3-44
3-29 Form for the REM~OVE Primitive 3-45
3-30 Form for the RESET Primitive 3-46
3-31 Form for the RESUME Primitive 3-47
3-32 Form for the SEND Primitive 3-48
3-33 Form for the SUSPEND Primitive 3-49
3-34 Form for the TEST Primitive 3-50
3-35 Form for the TRACE Primitive 3-51
3-36 Form for the UNLOCK Primitive 3-53
3-37 Form for the WAIT Primitive 3-54
3-38 Sanple Legal Path Table Entries 3-55
3-39 Form for the Table Entity.............................. 3-58
3-40 Forms for Constant and Variable Entities 3-60
4-1 AISIM Levels of Operation 4-2
5-1 AISIM READY Level Commrand Sunmmary 5-2
6-1 Terminal Profiles 6-2
6-2 Design User Interface Ccamrands 6-4
6-3 DUI Coand Summnary.................................... 6-5
6-4 PEI Ccan Summnary 6-16
6-5 Process Display with menu 6-25

x

FIGURE PAGE

6-6 Viewspace versus Workspace in ADE 6-33
6-7 ADE Cormand Summary 6-35
6-8 Architecture Symbols 6-36
6-9 Sample Architecture 6-57
6-10 Sample LPT Generated by Method A 6-57
6-11 Sample LPT Generated by Method B 6-58
6-12 Sample LPT Generated by Method C 6-59
7-1 Analysis User Interface Commands 7-4
7-2 AUI Command Summary 7-5
7-3 DEFPLOT Form for Items 7-8
7-4 DEFPLOT Forms for Process 7-8
7-5 DEFPLOT Forms for Queues 7-9
7-6 DEFPLOT Forms for Resources 7-9
7-7 DEFPLOT Form for Variables 7-10
7-8 Sample Plot ... 7-10
7-9 Sample Form for Selecting Plots 7-21
7-10 Sample Plot ... 7-21
8-1 RUI Command Summary 8-2
10-1 LUI Ccmmand Sunrary 10-2
10-2 Library Utility Data Flow Diagram 10-3
10-3 Checkout Command Summary 10-6
10-4 Mergein Command Summary 10-15
10-5 Mergeout Command Summary 10-23
11-1 Initialization Report - Constants, Tables, and Global

Variables .. 11-3
11-2 Initialization Report - Items and Queues 11-4
11-3 Initialization Report - Resources and Architecture Legal

Path Table ... 11-5
11-4 Initialization Report - Actions and Processes 11-6
11-5 Initialization Report - Loads and Scenario 11-7
11-6 Constant Report .. 11-8
11-7 Numeric Variable Report 11-9
11-8 Non-nuneric Variable Report 11-10
11-9 Item Report ... 11-11
11-10 Resource Report ... 11-13
11-11 Action Report .. 11-15
11-12 Queue Report .. 11-17
11-13 Process Report ... 11-20
A-i Sample Batch Job Submission A-6
A-2 Sample Batch Job Submission with Plots A-7
D-1 Listing of Process MRS D-5
D-2 Listing of Process NODEPROC D-7
D-3 Listing of Process DESTPROC D-9
D-4 Listing of Process CHANPROC D-11

xi

SECTION 1

I NTRODUCT TON

1.1 PURPSE A11D SCOPE

The Automated Interactive Simulation Modeling System (AISIM) provides the
iser with the 3bility to do high level simulation of complex operational
ind distributed data processing systems. The aurpose of this manual is to
orevide the AISIM user with a comprehensive guide for the use of the AISIM
s.stem on a VAX 11 Wu computer.

:.2 ORGAINIZATION

Th~s manual is - straightforward reference docunent
fr the A.STM user. Chaon I introduces this document, detailing the
organization of this docu-ent, the doct-rent conventions and applicable
doc,-nents Chaptr 2 is an overview of the concepts used in modeling and
simulation of systems using AISIM. Chapt 3 contains a detailed
description cf the AISIM modeling constructs. Chapter 4 describes the
interface between the AISIM software and the host computer's time sharing
system. Chapts" 5 through 10 present information of the various system
user interface levels, including detailed descriptions of prompts and
commands. Chapter 11 discusses AISIM simulation results and how to
interpret them. Appendix A presents operational procedures and other
information which is useful for the user to know but not mandatory for
using the syste. Appendix B lists simulation error messages with a
description of their meaning. Appendix C is a glossary of AISIM terms.
Appendix D contains a detailed description of the message routing submodel,
described in section 3.

1.3 DOCUMENTATION CONVENTIONS
The descriptions of AISIM commands given in this manual use the following

notations to define the syntax arV, fornat of the AISIM commands:

1. Commands shown in the format below are eauivalent:

DESIGN

D

The latter is an abbreviation for the former.

2. Required parameters are enclosed in braces:

ilanguage!

1-%

9 -?'".--.'. -. "----.-.'.-- '?'.'---'--.-- .-- .< ---..-- ,. --'."..---. .'---. .--. '..v , -.' .,. ,. -*- ,.'.., -".',:

3. Optional parameters are enclosed in brackets:

(MOXLATE j

Default values exist for all optional parameters.

4. The brace and bracket svmbols are used only to define the
format. They should never be typed in the actual conand
statement.

braces { I

brackets

5. The symbols listed below should be typed in a command
statement exactly as shown in the command statement
definition.

apostrophe

parentheses

period

6. Words in lower case appearing in a comrmand definition
represent variables for which the user should substitute
specific information in the actual command.

EXAMPLE: If "database" appears in a command definition, the
user should substitute a specific name of a database
(for example, CONTACT) for the variable when the

comrwand is entered on the terminal.

7. All upper case words and letters in a conand definition, such
as a cormand name or a parameter name, must be typed as part of
the command statement.

8. All command names and associated parameters must be separated
from each other by the appropriate delimiter, as shown in the
commnand definition. Delimiters are either a comma or a blank
depending on the context. A blank is entered on the terminal by
pressing the space bar at the bottom of the terminal keyboard.

EXAMPLE: BACKUP [PROJECT(database)]

If the optional parameter is used, it must be
separated from the command name BACKUP by a blank (),
i.e.,

BACKUP PROJECT (contact)

1-2

.en a coma is to be used as --he delimiter, it will be

specified as part of the conand definition.

EXAMPLE: DEFPLOT fentity-typel, tentity-namel

In this example the criand name DEFPLOT would be
separated from the required parameter (entity-typel by
a blank and the two required parameters would be
separated from each other by a comma, i.e.,

DEFPLOT R,resource

9. The references in this document to specific words which are
AISIM entities, will appear with an initial capital. This is to
distinguish the reference to an AISIM specific concept from a
cammon interpretation of the word.

EXAMPLE: Process - Occurrences of this refer to the AISIM
entity.

1.4 APPLICABLE DOCUMENTS

The following documents provide additional information r:levant to the
operation and use of AISIM:

AISIM Training Manual

AISIM Training Examples Manual

1-3

,-..... .*.-.-

* .. .,-.- , ,r.". -. I

SECTION 2

AISIM CONCEPTS

The Automated Interactive Simulation Modeling System (AISIM) provides a
tool for the analysis of complex systems. The tool is designed for the
operations analyst or engineer as 3 workbench for investigating the impact
of system alternatives. AISIM provides a graphics language for the
expression of systems, a 'Iat3base for storing a system's design and a
simulation capability for analyzing the system. AISIM is applicable to
design analysis of hypothetical systems and to the operations analysis of
existing systems.

AISIM is a computer program that allows for the simulation of complex
systems by a user without the need for the user to do additional
programing. The program can be executed interactively by a user
com1unicating with a host computer through a terminal. By using the host
computer in an interactive mode, an AISIM user can use AISIM to obtain
timely data to support decisions on how a system is to function.

2.1 CHARACTERISTICS OF SYSTEMS MODELED BY AISIM

AISIM supports the design and analysis of systems having any of the
following characteristics.

1. Procedural operations -- Processes in the system can be
described by a sequence of steps that describe the logic of every
operation (e.g., ooerator actions, operating system logic,
applications logic, man-machine interface, real time input
processing).

2. Parallel Processing -- Any number of processes can occur
simultaneously.

3. Shared Resources -- Some orocesses require resources that are
contended for by other processes (e.g., two I/O requests
contending for a single channel). Queueing is reflected in the
degradation of the time required to comolete processes suffering
resource contention (e.g., large aueues behind bottlenecks in a
network).

4. Operational loading -- The operation of the system is a
function both of its internal structure and of the environmental
pressures on it.

5. Process communication -- Processes transfer data and materials to
other processes in the system (e.g., both message routing and
network control information communication can be easily
represented).

2-I

• r .-....- ,, ,,, ~~~~....-.. - . -

6. Interconnectea network -- 'erwork architectures consisting of
interconnected nodes can be represented in AISIM. System
constructs allow the user to define the routing of messages
through the described architecture. AISIM also allows for the
modeling of systems abstracted from any particular architecture.

These characteristics are -iener:c to a large class of systems including
military, computer, and industrial systems.

2.2 MODELING

In scientific and engineer-no isaqe, -i "del is a simnified (or
idealized) representat:cn of 3 system that is advanced as a basis for
calculations, predictions 'r furter investigation. AISIM modeling fits
comfortably under this general characterization, but AISIM is especially
useful for the modeling of systens which incorporate parallel processing
(simultaneous activity) and networks. AISIM is particularly suited to the
modeling of embedded computer systens for command, control and
communication applications.

There are many applications of simulition modeling in this problem area.
AISIM models are representative, discrete event simulation models usd for
predictive operations analysis. What this means is that entities in a
real system are mapped onto AISIM entities which have a very close
functional relationship. AISIM entities respond to simulated conditions
much like the real entities do under actual conditions. This is in
contrast to functional modeling where the real system is described in
terms of equations in differential calculus. The emphasis in
representative modeling is on describing the system.

Generally, determining and clearly describing the system is the first
major obstacle a modeler must confront. If a system is in the design
phase, then no data is available on how it will perform or what the major
bottlenecks will be. For existing systems these characteristics may be
known but the combination of events that cause problems may not be
understood. In both cases, much c:n be learned from modeling the system.

A key concept to keep in mind is that models are a simplified description
of a system. This implies that some el-nents of the real system may not
be represented in the model. The challence in modeling is to represent
all the elements of critical interest to the system dynamics in the model.
This requires some thought to the eevelopment of the model.

2.3 DESIGNING MODELS

A model should be carefully designed before being built. The key
activities addressed during the design phase are the following:

1. Understand the Model qnd Collect Pelevant Data -- To model any systen
effectively, a modeler has to know something about the system.
Building an executable simulation model reauires that the system have
an accurate and sufficiently detailed descripticn. A modeler must be

2-2

..... * 2 . . * .* . . - -. -~ .. . - - - - - -

aware of the functions oerformed in .3;st -f which effect the
dynamics of the operation. A modeler must also know the
characteristics of all the elements that pprform work, create data,
control processing, interrupt normal operations and produce outout.
This data can be obtained from design sne"-fications, hardwarespecifications, previous studies or mnnirtcal testing. It is

important to collect good data because -hat data becomes the
foundation of the model.

2. Determine Model Boundaries -- Systems modeled by AISIM generally
consist of many subsystems. The problems caused by the ccmbination
of subsystem activities are of interest to the analyst. AISIM
provides varying levels of detail in modeling a subsystem. Sometimes
the activity can be viewed as a black box. The flow of control
through this box can simply be represent_ d by a delay. This type of
phenomena is modeled by AISIM with the Action entity. Other times,
the characteristics of a subsystem can be represented by a
mathematical function. AISIM has such a functional capability with
the EVAL Primitive and Table entity. If an activity is more
complicated, it can be described by lea~c. In this case, AISIM
allows the modeler to go to his own level of lecnil by buildinei a
Process. Setting the boundaries of an AIS:M model is precisely wChat
the modeler does in deciding which of these constructs will be used
to model the elements of a system. A method of paper modeling
developed for software design is known as "structured design". This
method uses structure charts, hierarchical charts showing calling
sequences, to describe functional processing. This method has been
used successfully with AISIM. An alternate method would be to create
flow charts of the various system functions.

3. Determine Experimental Method -- A model allows an analyst to run
experiments on a system to predict how an operation will behave.
Before any effort is expended in building a model, the output of
simulation runs must be considered. Monitors can be designed to
provide data on the system's operation. Exeriments can be designed
to validate the model.

2.4 CONSTRUCTING AN AISIM MODEL

2.4.1 Charting a Paper Model

In building a model, a modeler maps the elements of a system onto the
constructs of the simulation language. To do this, the modeler must be
familiar with the characteristics and relationships of both the simulation
tool and the real-world system. The mapping is not always clear-cut and
usually requires iteration. The modeler charts out what processing takes
place in a system, where resources are allocated, how processes
communicate and where activities initiate. This chart is referred to as a
paper model. It may be derived fram an understanding of the system's
functions and a graphical representation of its network. On the paper
model, the modeler names the entities in the system that will be modeled
by AISIM entities - Processes, Resources, Items, Queues, Tables, etc.

2-3

;.* -" -".".., -. . .,_. ,"-.. " .. './'.."" "'''' .r'"...' '. ''.'.'''\ " ''''' '.'.'.; '. - , \'.'' =

- . -- '.. .- 7 .7

2.4.2 Defining the AISIM Model

An AISIM model is built by defining AISIM entities to represent system
entities. This is done interactively on the computer. AISIM solicits
relevant data for defininq all design entities.

2.5 AISIM MODELING ENTITIES

As mentioned earlier, a model is a description or abstraction of a real or
proposed system. To build a model with the intention of simulating its
operation, we must describe the model in terms which can be interpreted,
and operated upon, by -he simulation system. That is, a system can be
modeled using a prose description; but unless it has some systematic
relation to a computer language, it would be useless as a computer model
because prose is ambiguous. AISIM uses a special set of terms to describe
system structure and operation called AISIM entities. A modeler must
understand the meaning and use of these entities to build successful
models. These entities are briefly discussed below. A detailed
discussion of each of these entities is orovided in section 3. Figure 2-1
also provides further insights to the meaninn, use, and relationshios
between entities and other modeling constructs.

ALLC

EV*L

,..I I A.lPLAI /N m LZ

T A "" !' J / o . -

.AcLC.r ne \ Tr E -4 *v v

ELM

Figure 2-I. AISIM F ntity/ Pelationships

2 -4

:, ...;; " :. :::.-..::-.:.::-.-:::.-:,t A. :., *.. A..-:,:....::::.::....:: .::: .:-:.... .. .: .. : ...:.:. _.-. :.-, ;- - -- . -- - - - < < ,- .. -.- .- -,-w

Constant - A Constant is a term whose value does not change
during, a simulation exercise of a model. Constants are used to
represent parameters that do not vary with time or in response
to the workings of the system being modeled.

Item - An Item is a transient iata element and is used to
represent messages (or materials or even pnysical objects)
flowing through the system.

Load - A Load is used to represent aspects of the world outside the
system that trigger the initiation of Processes. Loads
represent the normal burden, i.e., occasional Process
triggering, on a system.

Primitive - Primitives are logical constructs that represent
steps in the modeled system's operation. There are 25 different
Primitives each representing a different logical function. A
sequence of Primitives compose a Process. All Primitives are
listed below. The ACTION primitive has an Action entity
associated with it. The Action entity is defined below.

ACTION - (See below)
ALLOC
ASSIGN
BRANCH
CALL
COMPARE
CREATE
DEALLOC
DESTROY
ENTRY
EVAL
FILE
F IND
LOCK
LOOP
PROB
REMOVE
RESET
RESUME
SEND
SUSPEND
TEST
TRACE
UNLOCK
WAIT

Process - A Process is a logical description (using Primitives) of
sane or all of the operations, decisions or activities of the
system being modeled.

2-5

• o- ., -.- . . - . - . • ' "
°

- "
o

"
° ° °

• - • • • ° . . % -....-. '-. .-.- , ..- -.- ., -.. .'.. ...- ,: , - - .. ~.. -. .. ,*. .. - . - . ,- , .'- . - - -,-., - - . ,,- ,, . . ., ,. - ,-

Action - An Action, which is associated with the ACTION Primitive, is

used to represent the consumption of time for any action,
activity, decision, etc., that consumes time. The ACTION
Primitive is the only one that updates the simulation clock.

Queue - The Queue entity 's used to model an ordered holding area for
c3ne or more Itens. A Queue may be used to model, for example, a
job queue or a memorv buffer. A Queue may be defined with a
maximum size oarameter to model, for example, such limits as the
maximum number of messaaes that a buffer can hold before it is
overloaded. Queues near a default size of infinite.

Resource - The Resource entity ,s used to model the mechanisms
(people, CPU, comunication lines, etc.) necessary to complete a
Process. Rescur-es ienerally have the property of being shared
aion Processes. Performance of a Process can be degraded due
Zo contention for Resources.

Scenario - The Scenaric entity is used to model the various
environments in .ic system must perform. A Scenario
soecifies the rnunher Df neriods of a simulation run as well as
:heir lpngth (which :s uniform). The Scenario schedules the
initiation of Loads. It can also schedule the initiation of
Processes.

Table - A Table is a user-definable function with up to fifteen pairs
of data points. Tables may be defined as either continuous,
discrete or alpha. A continuous Table interpolates linearly
between numeric points. A discrete Table is a step function
connectina numeric ooints. Alpha Tables are used for
structuring data over non-numeric ranges and domains.

Variable - A Variable is a term whose value can change during a
simulation run, either by setting it equal to a mathematical
expression or -hrough reassiarnent by the user between stages of
3 simulation.

Keywords - The ke,vors ire systEf-defined variables which provide
the user with information about the current state of the
simulation.

2-6

...-..-................ " ' .- - "% '. % , - "%-. ".. - °

AISIM ENTITIES AND OTHER MODELING CONSTRUCTS

In this section ATSIM's entities and othe- modeling constructs are

described in detail. For each entity, the parameters required to define

the entity and the means by which this data is requested from the user are
described. Included is mention of relations between the various AISIM
entities, where such mention is eemed helpful.

3-1

SCEMARIO

3.1 SCENARIO

The Scenario entity is used to represent the var-ous environments in which
-_e system beina .ei m'st cer-'r. T cetter with the L.ad entity it
represents the externai st:Tuli on a modeled systn.

In a Scenario, the user defines a collection of Loads and/or Processes,
together with schedule time and triggering priority for each. The
Scenario calls for the initiation of activity over time by activating a
Process or Load at the corresponding scheduled time.

Scenarios are divided into periods whose length and number are chosen by
the user. These oeriods provide breqk points at which the user can stop a
simulation to alter a variable or inspect the results up to that point.
There may be up to 14 periods in a given Scenario. The form for the
Scenario is shown in figure 3-1.

Fiaure 3-I. Form for the Scenario Entity

Following is a description of the fi lds in the Scenario form:

SCENARIO: Scenario name (1 to 8 characters)

PERIOD LENGTH: Amount of time in each simulated period.

DESCRIPTION: Any user comment (0 to 53 characters)

PERIODS: Mnemonic names .-an be entered in these fields
consisstino of up to 3 cnaracters per name. The nuiber of
fields containing charqcters determines the numnber of

3-2

',_ _ " :, " •", . . ". "....... .' "$.,, J% .".". ..- •"' "- -.-.. "",, '". .- ,%"-". •.. '' """

periocs :.n a simulation, i.e., for each of the 14 fields
in which an entry is made a period is added to the total
simulation run. A Scenario can have 3 maximum of 14
periods.

TRIGGER: I to 20 Process names or Load names; eacn Process or Load
named causes the initiation of that Proc'ass or Load at
the scheduled time.

SCH TIME: The simulation time, from the start of the simulation, at
which the the Load or Process specified is to be
initiated.

PRIORITY: The orioritv the triggered Process is to have. Priority
is inverse, priority 1 preempts priority 2. If a Load
name is entered in the trigger field, the corresponding
nriority field is ignored.

Note: Constants may be used to define PERIOD LENGTH, SCH TIME, and PRIORITY.

Operation - A model database may contain more than one Scenario. However,
only one can be used in any simulation. The Scenario specified will define
simulation period length, and Loads and Processes to be triggered by the
Scenario. The total simulation time is the product of the number of periods
and the period length. The number of periods also effects the collection of
plot data points. (see appendix A.3)

Scenario entities are entered using the Design User Interface EDIT comand (see
section 6.1.4).

3-3

." .
-

""

LOAD

3.2 LOAD

The Load entity is used with the Scenario entity to periodically trigger
Processes at specific nodes in -he architecture. The Load describes which
Processes will be initiated and at which nodes. An instance of the Load is
triggered simultaneously at each of -he specified nodes. This entity can be
described in the following way: for each Process in the Load, initiate up to
the maximum number at an interval determined by the schedule method, and
initiate them at each of the specified nodes. The form for the LOAD entity is
shown in figure 3-2.

" , AI - M 7.

Fiaure 3-2. Form for the Load Entity

Following is i description of the fields in the Load form.

LOAD: Load name (I -o 3 characters)

NODES: If an architecture is used, one to eight nodes in which the
Processes specified will take place. Otherwise leave blank.

DESCR: Any user ccnment (0 to 53 characters)

PPOCESS: I to 5 names of Processes which the Load triggers according to
schedule.

MAX *: Maximum number of times this Process is to be triggered in
each execution of the Load.

SCHMTD: Statistical function to be used to determine the time between
Process triggerings. It can be any of those described under
SCHEDULE METHOD (see below).

3-4

-. -.. . .
i Ii S~li i i i l i . • , .. , ,. . . ._

MEAN: Depending ,,on scner ujl re-,cd, YEAN is used to determine the
interval between each triggering of a Process. In general
this is the mean inter-!.rrival time.

DELTA: Depending uor schedule method, DELTA is used to determine the
7eviat:on ... cut -_e -e:4r -te :nterval between trcaerincs
of a Process.

PRIORITY: Priority with which the Process is to be executed. Priority
is inverse, Dr:ority I preempts priority 2. Priority is used
to determine whicn Process will be allowed to allocate a
Resource when it is contended for by two or more Processes
(see ALLOC Primitive, section 3.9.2).

SCHEDULE METHODS:

START - MEAN: inapplicable; i.e., leave field blank
DELTA: inapplicable; i.e., leave field blank

All Processes u to tne miximun number are initiated at the
same clock time, the start of the Load. This can be used to
simulate pre-loading.

INTERVAL - MEAN: time between initiations
DELTA: inapplicable; i.e., leave field blank

One Process is initiated at everv interval as defined by MEAN.
The first starts at the time given by MEAN with respect to the
starting time of the Load.

POISSON - MAX 0: mean number in a PERIOD
MEAN: inapplicable; i.e., leave field blank
DELTA: inapplicable; i.e., leave field blank

Processes are scheduled randomly by a Poisson process. The
time between Process triggerings is exponentially
distributed. The MAX i parameter defines the mean number for
a PERIOD. PERIOD length is defineO in the Scenario.

EXPONENT - MEAN: mean time between Process triggerinqs
DELTA: inapplicable; i.e., leave field blank

The time passing between Process triggerings is exponentially
distributed.

LOGNORML - MEAN: mean time between Process triggerings
DELTA: standard deviation of time between Process triggerings

The time nassing between Process triggerings is lognormally
distributed.

NORMAL - MEAN: mean time between Process triggerings
DELTA: standard deviation of time between Process triggerings

3-5

The rime passing between Process triggerings is normally
distributed.

UNIFORM -MEAN: mean time between Process triggerings
DELTA: range about the MEAN

The time passing between Process triggerings is uniformly
distributed. The DELTA parameter specifies the difference
between the largest possible time between Process triggerings
and the MEAN time.

ERLANG - MEAN: mean time between Process triggerings
DELTA: order of the distribution function

The time passing between Process triggerings is Erlang
distributed. The order "k" is given by the DELTA.

WEIBULL - MEAN: scale parameter.
DELTA: shape parameter

The time passing between Process triggerings is Weibull
distributed.

GAMMA -MEAN: mean time between Process triggerings
DELTA: k

The time passing between Process triggerings is garma
distributed.

Operation - a Load specifies a cluster of Processes to be triggered according
to a scheduling method and a priority.

Relationships - Loads are part of Scenarios and specify Processes to betriggered and nodes in which they are to be triggered.

Load entities are entered using the Design User Interface EDIT commrand (see
section 6.1.4).

3-6

T TEM

3.3 ITEM

The Item entity is used to model transient data elements that "flow" throuqh a
system. These 3ata itens, which, by the nature of their varying attribute
values, permit date epeneent decision making and timing.

Items can be originated, terminated and passed through the system from one
Process to another through the Primitives CREATE, DESTROY, CALL and SEND.
Items can also be placed on-and renoved from Queues via the Primitives FILE
and REMOVE, and pointed to v'ia the Primitive FIND. The form for the Item
entity is shown in figure 3-7.

Figure 3-3. Form for the rtem Entity

Following is a description of the fields in the Item form.

ITM NAME: I to 3 character name of Item

DESCRIPTION: Any user comTnent (0 to 53 characters)

NAME: 1 to 8 character name of an attribute of Item. An Item
can have up to 15 user-defined attributes.

VALUE: The initial value to be assigned to the corresponding
attribute (integer, decimal, or character); if a nane, it
must be T. defined Process, Resource, global Variable,
Constant, Item, Queue, Table, Action, keyword or alpha
literal.

NOTE: All Items have two i-plicitly defined attributes, TAIL and PRIORITY.
TAIL is the number of the Itian created, and PRIORITY is the priority of the
Process that created the Item. The TAIL attribute can be used for Item
matching (see SEND Primitive).

3-7

to e 0 . V . . .

Operation - An Item is created for each occurrence of the following:

a. a CREATE Primitive that is executed - used to model transient data
el ements

b. a SEND Primitive that is executed in a Process which does not have an
Item of the specific name attached at the time.

An Item is terminated only when the DESTROY Primitive is executed.

Attribute values are assigned at the time of creation.

Relationship - - ' ttributes are used by Process Primitives and attribute
values can be modified by the ASSIGN Primitive.

Item entities are entered using the Design User Interface EDIT cczmnand (see
section 6.1.4).

I.-

ie

m 3-8

- 77 ZW.

USER DEFINED QUEUES

3.4 USER DEFINFID QUEUES

A Queue is a global entity used to represent an ordered holding area for
Items.

When a Queue is defined, a maximum size parameter is specified (the default is
"infinite"). This allows Queues to model finite storage devices that have a
limited capacity (e.g., a storage bin, a computer job scheduler). Once the
value is defined, it may not be changed and thus this parameter must be either
a numeric value or a defined Constant.

Queues are manipulated by Processes through the use of the FILE, FIND, and
REM1OVE Primitives. An !Item may be placed on a Queue, if space exists, by
using the FILE Primitive, specifying one of four location parameters: FIRST,
LAST, BEFORE and NEXT. The former two parameters denote :he end points of a
Queue, the first and last slots. The latter two are location parameters
relative to a Queue pointer (see below). if no space exists on the Queue, the
Process which is executing the FILE Primitive is suspended. This condition is
known as Queue blocked. In this state the Process waits until space becomes
available on the Queue. Waiting for space on a Queue is by a first cane first
served discipline.

An Item may be taken off the Queue by using the REM OVE Primitive and
specifying a location parameter (i.e., FIRST, LAST, or NEXT, where NEXT means
the current Item pointed to by the Queue pointer). After an Item is removed
from a Queue, it may be sent, destroyed, or otherwise modified.

An Item may not be modified, sent, or destroyed while it is on a Queue. The
same Item instance may not exist on more than one Queue. M ultiple Processes
may access the same Queue.

A Queue pointer is maintained for each Process which references a Queue. This
pointer contains the address of the entity that the Process is addressing in a
Queue. The contents of the Queue pointer is determined by rules described
below and in the sections on the Primitives FILE (section 3.9.12), FIND
(section 3.9.13) and REM~OVE (section 3.9.17):

1. The pointer contains the address of the last entity found with a FIND
Primitive; otherwise,

2. The pointer contains the address of the last entity filed with a FILE
Primitive; otherwise,

3. The pointer contains the address of the successor of the last entity
removed with a REM OVE Primitive with a NEXT option.

The REMOVE and FIND Primitives access a Queue and set the value of the local
variable referenced in the Primitive. This means that when a FIND or REM'OVE
Primitive is executed, the value of the local variable could be set to 0.
This occurs under the following circumstances:

3-9

.

1. A R-mOVE ?rimitive attempts to remove an entity from an Enpty Queue.

2. A FIND Primitive accesses an empty Queue.

3. The N1EXT or BEFORE Itam in a Queue does not exist.

The form for 1-the Queue entity is shown in figure 3-4.

Figure 3-4. Form for the Queue Entity

Following is description of the fields -r. the Queue form.

QUEUE: i to 8 character name of Queue

SIZE: An integer value of 1 to 8 digits, a defined Constant entity, or

the word INFINITE

DESCR: Any user canment (0 to 53 characters)

Relationships - Queues are used to hold Items. Queues are manipulated by the

FILE, FIND, and REMOVE Primiti.es.

Queue entities are entered using the Design User Interface EDIT command (see
section 6.1.4). Attributes associated with Queue entities are described in

section 3.12.

See section 3.5 for a description of system defined queues.

3-10

SYSTEM DEFIIED QUEUES

3.5 SYSTEMI DEFINED QUEUES

3.5.1 States Associated witni Resources

Associated with each Resource entity are four simulation states upon which
statistics are kept. Three of these states apply to Resource units and one of
the states applies to Processes. Resource units can be in one of the three
states idle, busy, and inactive. If a Process is waiting for a Resource unit
which is unavailable, the Process is in the wait state. Resource units which
are idle or inactive are -~ccounted for by counters associated with the
Resource. Busy Resource units are kept on a system-defined queue called the
busy queue, and Process which are waiting for Resource units are kept on a
wait queue. Resources and Processes are placed in these states during the
simulation as follows:

Resource units are idle while they are unallocated and available to
Processes. Resource units are in the idle state: (1) at the
initialization of the simulation, (2) when removed fromn the inactive
state (by the RESET Primitive) or (3) when removed fran the busy queue
(by the DEALLOC Primitive).

Resource units are placed on the busy aueue while they are allocated by
sane Process through the ALLOC Primitive. They may be removed fran the
busy queue (1) by being deallocated with the DEALL)C Primitive or (2) by
being set inactive by the RESET Primitive.

Resource units are in the inactive state when they are not available to
be allocated by Processes. Resources may be placed in this state (1) at
the initialization of the simulation, (2) from the idle state by means of
the RESET Primitive, and (3) fran the busy state by means of the RESET
Primitive.

The wait queue holds Processes that are suspended for lack of an
available unit of the needed Resource. A Process is placed on this queue
when either (1) it attempts to allocate the Resource (with the ALLOC
Primitive) that is held by another Process of equal or "higher" priority
or (2) it loses a Resource to a "higher" priority Process.

The relation between these states is illustrated in figure 3-5.

Duiring a simulation run statistics are kept on the activity of these states.
These results are presented in the simulation's Resource report. The user can
access the numnber of Resource units or Processes currently in each of the
states using attributes described in section 3.12.

3-11

| .1I L .

RSES (-) " .

Figure 3-5. Resource States

3.5.2 Cross Reference Sets

In addition to the aueues associated with Resource contention, there are eight
system defined queues called "cross-reference sets". These queues correspond
to the sets of names of the following AISIM entities:

1. Resource names

2. Queue names

3. Process names

4. Item names

5. Action names

6. Table names

7. Constant names

8. Variable names

What this means is that an AISIM modeler can write Processes which perform
same function on each entity defined in one of the above sets.

The FIND Primitive accesses the set of names of an entity type by specifying
the name, e.g., Resource, Item, Process, as the Queue field reference in the
Primitive.

3-12

RESOURCE

3.6 RESOURCE

The Resource ?ntitv is used to model the mechanisms required to perform a
Process. "Mechanisms" in this context can be computer processors, memory,
corrunications cnannels, suzoort personnel, documents, etc.

Queueing for a Resource occurs only within a Process and, in particular, only
where an ALLOC Primitive is used. In other words, if no ALLOC Primitive is
used there will be no queueing. If no Resource is used (allocated) within a
Process, the Process can be executed in Parallel (simultaneously) by any
number of concurrent reauests and the model will represent only time delays
associated with the ACTION Primitive.

When a Resource is used (allocated) by a Process, there can be only as many

concurrent executions of the Process as there are Resource units available.
For exanple, if the capacity of a Resource is one, then any Processes which
allocate that Resource will be executed serially (one at a time). Execution
concurrency is controlled only between the allocation and deallocation of the
Resource (i.e., if the ALUC Primitive is the second Primitive in a Process,
thxe first Primitive can be executed concurrently by any number of requests
whereas the ALLOC Primitive can be executed concurrently by only as many
requests as the Resource has units available).

If no Resource units are available (i.e., idle or presently allocated to a
lower priority Process) when an ALLOC Primitive is attempted, the Process'
allocation request is merged onto a wait queue associated with the Resource.
How the request is merged depends on the priority of the request. The request
is merged and sorted by inverse priority (priority I preempts priority 2).
Within priority the sorting is done first-in-first-out. When deallocation of
the Resource (by some other Process) has resulted in enough units to satisfy
the requests, and the request has moved to the top of the wait queue, then the
request is removed from the aueue, the allocation is performed, and the
Process is executed. Note that a deallocation of several units may result in
several requests being removed from the queue simultaneously. For allocation
requests of multiple units, the user can specify whether the units are to be
allocated as they become available or only when all units are available at the
same time.

If, when the ALLOC Primitive is attempted, there is a lower priority Process
possessing the desired Resource units, then the higher priority Process will
"steal" those units. The lower priority Process will be suspended while it
waits for Resource units. It will be placed on the wait queue but its
seniority is based upon the time of its first allocation attempt, not the time
it lost its Resources.

The Resource entity provides the most interesting and useful simulation
results; e.g., delays, bottlenecks, utilization percentages, and traffic
statistics. Therefore, the use of Resources should be carefully designed from
both the standpoint of model credibility and the specification of required
simulation output.

3-13

The form for the Resource entity is shown in figure 3-6.

7 - V

Figure 3-6. Form for the Resource Entity

Following is a description of the fields in the Resource form':

RESOURCE NAME: 1 to 8 character name of Resource

TOTAL NUMBER: Max imumn number of units of the Resource that can be
allocated (integer or named Constant).

INITIAL NUMBER: Number of units available for allocation at the start of
the simulation (integer or named Constant).

DESCRIPTION: Any user commnent (0 to 53 characters)

NAME: 1 to 8 character name of user defined attribute
Cost is a default attribute to document the cost of the
Resource.

VALUE: Initial value to be assigned to an attribute; can be
single precision real or integer numxber, or the nam~e of
a defined Variable, Constant, Process, Item, Resource,
Queue, Action, Table, or a keyword or alpha literal.

Operation - Resources are initialized at beginning of simulation to the values
given above.

3-14

Relationships -Resources are -.s:ed by Processes with the ALLOC, DEALLOC,
RESET, LOCK, UNTLOCK and TEST Primitives.

Resource entities are entered using the Design User Interface EDIT cormmand
(see section 6.1.4).

3-15

ACTION

3.7 ACTION

The Action entity represents time consumption for any activity, decision,
etc., that consumes time. -his entity functions in conjunction with the
ACTION Primitive. For eacn 'iefined Action entity, statistics on the time
consumed by the associated ACTION Primitive are collected for the simulation's
Action report. For this reason, each Action named in an ACTION Primitive is

given a separate definition outside the Process in which it appears.

In the form for this definition, the ACTION field contains a name identical
with one that appears in 3 Process. The field CLASS is optional and is
intended as a means to document what kind of activity is taking place or
who/what is performing the action (viz., man/machine). DESCRIPTION is used
for any mnemonic. The form for the Action entity is shown in figure 3-7.

Figure 3-7. Form for the Action Entity

Following is a description of the fields in the Action form:

ACTION: I to 8 character name of action

CLASS: user defined class

DESCRIPTION: Any user co~mment (0 to 53 characters)

Relationships - Actions are referenced by the ACTION Primitive.

Action entities are entered using the Design User Interface EDIT command

(see section 6.1.4).

3-16

PROCESS

3.8 PROCESS

The Process enti ty is used to represent the searueoti al logic and
activities, operations, functions, etc., of the modeled system. Processes
are carnposed of Primitives, each of which represents a step in the
function being modeled by the Process. It is at the Primitive level that
Resources are allocated and deallocated, time is consumed, decisions take
place, etc.

In the graphic representation of a Process, the Primitives are flanked at
the top and bottan by figures labeled START and END. These figures
represent the logical entry and exit points for the Process.

Processes are initiated by (1) Scenarios and Loads (within Scenarios) and
(2) by other Processes through the CALL and SEND Primitives. Once
initiated, the execution of the Process depends upon the availability of
the Resources that the Process references through the ALLOC and DEALLOC
Primitives.

There are three types of Processes: parameter passing, Item passing, and
standard. Each differs in how it is triggered.

A parameter passing Process is one that takes values of local variables
from another Process as inputs and/or returns the values of local
variables to the other Process as outputs. Such Processes can be
triggered only by a CALL Primitive and it is the calling Process which
sets up the relation for the values given and returned (see CALL
Primitive, section 3.9.5). The given and return values can be numerics,
string literals, keywords, the names of It~ns, Queues, Resources,
Processes, Tables and Actions.

An Item passing Process is one that is triggered by having Item(s)
delivered to it f ran other Process(es) through the SEND Primitive. The
required Items need not be delivered fran a single Process; the sending
Processes may be as many as six, but the Process will not execute until
all of the Items indicated in the definition are delivered.

A standard Process is one which neither requires Items nor is given (or
returns) parameters. It may be triggered by either a CALL Primitive fran
another Process or through the Scenario or Loads.

Wh~en a Process is defined, the node in which the Process is to execute is
specified. If the Process can execute in any node, or if there is no
architecture, ALL can be specified. Generally, when a Process is
triggered, it executes in the same node as its parent, or when a Process
is triggered fran a Load, the Load nodes specify where the Process is to
execute. However, if a Process is triggered fran a Scenario, the node
specified for the Process is the one in which the Process executes. The
node specified in the Process definition is also available to the user
through the $NODE keyword (see section 3.16).

3-17

The initial form for the Prccess entity is shown in figure 3-8.

:I - 7E-Mm " -- 0 R ITEMt PA5S:4(

..... -. '.-,D

Figure 3-8. Initial Form for the Process Entity

Followinq is a description of the fields in the initial Process entity

form:

PROCESS NAME: 1 to 8 character name of Process

NODE: architecture node in which this Process is to
execute (if its execution is restricted to a
specific node; ALL in this field indicates the
Process may execute in any node)

ATTRIBUTES ATTACHED: YES or NO to indicate whether the Process has
attributes.

PROCESS DESCRIPTION: 0 to 53 alphanumeric character description.

START BLOCK TYPE: (STD, ITEM, PARM)

To define an Item passing Process the user enters "Item" in the START
BLOCK TYPE field. The user will then be presented with the form shown in
figure 3-9.

411 A 4E FAfrl 4

Figure 3-9. Form for an Item Passing Process

3-18

. - .''.. .' .' - . • • .". '. °- . '- ' .'.. . .' .' . - -. . ,- .- - ." . - ." . ° ~. . ". .- .. o[-- '. . . . 5. -. -. , .. '

This form is for providing a list of the needed Items. The Items received
by each must be of distinct types.

The field concerning the matching of serial numbers asks whether the TAIL
numbers (which is a default attribute of every Item) must be the same for
all the Items in -he Process. T f the -,ser enters "Yes" in this field, the
Process will not execute until it has received Items of the specified type
to which the same TAIL number attribute has been assigned.

To define a parameter passing Process the user enters "PARM" in the START
BLOCK TYPE field. The user will then be presented with the form shown in
figure 3-10.

Figure 3-10. Form for Parameter Passing Process

This form is for providing the names of the local variables to be given
and returned to any Process that calls it through the CALL Primitive. The
CALL Primitive must contain the same nunber of entries in its given and
return lists as the called Process. If the CALL Primitive does not give
or return all the necessary values, an execution error will occur
indicating a disagreement in the number of values.

To define a standard Process the user enters "STD" in the START BLOCK TYPE
field. Since no inputs are relevant to its execution, there is no
secondary form for the definition of a standard Process.

Figure 3-11 is a typical flowchart representation of a Process. This
graphical representation of the logic of a Process is presented to the
user during the design of an AISI,1 model.

Relationships - Processes are constructed from Primitives. Resources are
used by the Process through the ALU)C, DEALLOC, RESET, LCCK, UNLOCK, and
TEST Primitives. Time is consumed by the ACTION Primitive. Processes are
initiated by Loads, Scenarios and by other Processes through the CALL and
SEND Primitives.

Process entities are entered using the Design User Interface EDIT command
(see section 6.1.4).

3-19

. * .-.

"... .. ,~hw- "- -' -- :-m'Im,,' m'. .,,. ..lli • '...: " ":

N ' . T

I,,__.__,._________" ""T. 3.: "W A I"":

Au" ,"U," "
L

'

•J 'TE "WE"",

M Ri4E -L':PtTI

41N -

IN _________ :-RE >'r 'M FR' :

IRI.[ASE RESOME PC I UWS

~END

Figure 3-11. Sa-mple Process Diagram

3-20

,, : -,,. .. , . -./, , ',., - ., - . 1 ;. ...,___,o__,_-, - ,, . ., , .- , - , -. , , ., ,, . . -. .,.,.

PR..

PRIMITIVES

3.9 PRIMITIVES

Primitives are the constituent elements of Processes and are used to
characterize procedural steps by sequential logic. AISIM offers a list of

25 Primitives. Although limited :n number, the Primitives have been shown
to represent all logical operations for computer system modeling. The
Primitives can be grouped into nine functional categories. These
categories are as follows:

Process Execution Control

CALL
SEND
SUSPEND
RESUME
WA IT

These Primitives control the initiation and seauencing of Processes.

Branch Control

COMPARE
BRANCH
ENTRY
PROB
LOOP

These Primitives govern the internal branching in the logic of a Process.

Item Handling

CREATE
DESTROY

These two Primitives govern the introduction and elimination of a system's
transient data elements.

Time Consumpt ion

ACTION

This Primitive represents the consumption of time through some activity,

decision, etc.

Mathematical Operations

EVAL

This Primitive governs calculations, invoking standard mathematical

functions and operations or making use of user-defined Tables.

3-21

Resource Al location

ALLOC
DEALLOC
RESET
TEST

UNLOCK

These Primitives govern the use of Resources.

Queue Manipulation

FILE
F IND
REM1OVE

These Primitives govern storage and retrieval on Quieues.

Variable Assignmrent

ASSIGN

This Primitive governs the assignm~ent of values to Variables or Attributes
(both numerical and non-numerical).

Debuggi ng

TRACE

This Primitive has the special function of creating a record of the
sequence of Process Primitive executions which takes place during
simulation. It is used for debugging and validating a model.

Figure 3-12 shows the graphic representation of each Primitive, and
following is a description of the meaning of each Primitive and the
parameters necessary to define each. Primitives are entered using the
Process Editor Interface of the Design User Interface (see section 6.2).

3-22

T. . P . .-

~A T I ON LOKLOCK

I Als ALLOC LOOP

o SSiu, MPRO

CALL

COMPARE ~RESUMRE

77
CIAL CREAIE

SEN 10SEND

i.L: DEALLOC

SUSPEND

NIWWDES ROY
T S~TEST

0 ,) ENTRY

~ TRACE

EVAL

FIEinFILE (OCKUNLOCK

FIND sIT

Figure -2-12. Cr, .phizal "cpres,-t: ti(,F* c" 'roc'-'ss rrirnitives

3-23

PRIMITIVES / ACTION

3.9.1 ACTION

The ACTION Primitive represents the consumption of time for an activity
that consnes time. The ACTION Primitive is used to model the time to
perform some real work event such as a man's activity or a machine's
activity. The time constined by an ACTION Primitive is determined
according to the selected distribution function (described below). The
form for an ACTION Primitive is shown in figure 3-13.

Figure 3-13. Form for an ACTION Primitive

Following is a description of the fields of an ACTION form:

ACTION NAME: A reference to a defined Action entity

METHOD: Distribution function type, which may be: CONSTANT,
EXPONENT, LOGNORML, NORMAL, UNIFORM, GAMMA, ERLANG or
WEIBULL. (The random numnber seed used for statistical
functions can be controlled by the user in the AUI.)

MEAN TIME: Typically specifies the average duration time of the
Action. This parameter varies in meaning depending on
the METHOD selected. For CONSTANT, it specifies the
exact duration value. For WEIBULL, it specifies the
distribution's scale parameter. For all other
methods, it specifies the mean duration.

DELTA TIME: This parameter varies in meaning depending on the
METHOD selected. Typically it specifies the
variation, about the mean, in the duration times.
Specifically:

CONSTANT - inapplicable (i.e., leave field blank)

EXPONENT - inapplicable (i.e., leave field blank)

LOGNORML - standard deviation

NORMAL - standard deviation

3-24

INIFORM - rarxoe about the mean (i.e. , the
difference between the largest possible
duration and the mean duration).

GAMA - K

ERE.AING - -,rder of distribution fLunc::-on

WEIBULL - shape parameter

COMMENT: Any user comment.

3-25

PRIMITIVES / ALLOC

3.9.2 ALLOC

The ALLOC Primitive indicates the allocation of (request to use) a
Resource which is needed by te Process. Whether a Resource requested by
the ALLX Primit:ve is actually obtained oy a Process depends on a nLnber
of conditions, as described in the section on the Resource entity, section
3.6. If a Resource unit is in -he idle state, it is available to be
allocated to the requesting Process. If the Resource is busy, then
allocated Resource units are checked to see if a Process can be preempted
by priority (priority :s inverse - priority 1 preempts priority 2) unless
the Resource is orotected with a LOCK primitive. The form for the ALLOC
Primitive is shown in figure 3-14.

- Q. r :-

Figure 3-14. Form for the ALLOC Primitive

Following is a description of the fields in the ALLOC form:

ALLOCATF RESOURCE NAME: A reference to a Resource

NUMBER OF UNITS PEQUESTED: The number of Resource units to be
allocated.

PARTIAL/ALL ALLCrATION: This soecifies whether the Resource units
will be allocated as they become available
(PARTIAL) or only allocated simultaneously
when they are all available (ALL).

ALLCCATTON PRIORITY: The priority to be used to determine which
illocation recuest will be satisfied in
tie case of Resource contention. SPRIORTY
is the default and evaluates to the
priority of this Process.

C"OMENT: Any uset coment.

3-2f.

-U-- ~-. 7-7 .-- - -

PRIMITIVES / ASSIGN

3.9.3 ASSIGN

The ASSIGN Primitive is used to set the value of the following references:

1. a global Variable

2. a local (to the executing Process) variable

3. the attribute of an Item (currently attached to the Process)

4. the attribute of a Resource

5. $CNODE (see section 3.16)

6. the attribute of a Process

Values that can be accessed for the assigrmnent are:

1. signed, single precision, real or integer numbers

2. $CLOCK (see section 3.16)

3. global Variables or Constants

4. local variables

5. Resources with any of the qualifiers tWAITQ, NBUSYQ, NINACTQ or
NIDLEQ (see section 3.12)

6. Item attribute values

7. Queue qualifiers NQUEUE or TQUEUE (see section 3.12)

8. Resource attribute values

9. Process attribute values

10. an Item name

11. a Resource name

12. a Process name

13. a Queue name

14. a Table name

15. an Action name

16. $NODE (see section 3.16)

3-27

m m m II]I I ll III III I I~iIIIIII IiIi Ii i -m -- - 'f--...

17. 5NXTNODE (see section 3.16)

18. SLINK (see section 3.16)

19. $TASK (see section 3.16)

20. SCNODE vee section 3.16)

21. an alpha literal (first character is S) (see section 3.15)

The form for the ASSIGN Primitive is shown in figure 3-15.

,- :

Figure 3-15. Form for the ASSIGN Primitive

In the form, V1 and Q1 are used to reference the current value, and V2 and
Q2 are used to reference the value being set. For accessing values such
as local variables, the simulation clock, etc., only the "V" fields need
to be used. If the user is accessing an attribute of an entity, such as
an Item, both the '" and "Q" fields need to be used. The "V", field
contains the name of the entity (Item, etc.) being accessed, and the "Q"
field contains the name of the attribute of the entity whose value is
desired or being set.

Following are examples of some typical entries:

Vl: Item Vl: Item Vl: Variable
Q: attribute Ql: attribute QI:
V2: Item V2: Variable V2: Iten
Q2: attribute Q2: Q2: attribute

VI: Variable Vl: Constant VI: Constant
Ql: QI: Q1:
V2: Variable V2: Item V2: Variable
Q2: 02: attribute Q2:

COMMENT: Any user comment.

Note that it is the entity specified by V2 and Q2 that takes on the new
value specified by V1 and Qi.

3-28

<. .. i, -,/ -... ?. .. '- ., . i ... <. ,.-- .,..-. v .--... ,---

PRIMITIVES ~'BRACH

3.9.4 BRANC)H

The BRANCH PrimitiVe indicates an unconditional branch to a named entry
point. It is used for ?rocss exec-ti sequence control. The form for
t-he BRANCH Prim,,-~ is shown .n - ijure - 6

[-4

Figure 3-16. Form for the BRACH Primitive

Folowing is a description of the fields in the BRANCH form:

LABEL: The entry point to which the Process execution is to go
(which must be defined by an ENTRY Primitive).

COMMENT: Any user coment.

3-29

- ..

PRIMITIVES / CALL

3.9.5 CALL

The CALL Primitive triggers execution of the called Process.

A CALL has one of three options (I) WAIT, (2) NOWAIT and (3) BLOCK. If a
Process is c~lled with the opt'on WAIT, the calling Process will suspend
execution until the called Process is completed. If a Process is called
with the NOWAIT option, both called and calling Processes will execute
simultaneously and will have no further communication. If a Process is
called with the BLOCK option, the two Processes will execute in parallel
until a WAIT Primitive is reached in the execution of the calling Process.
When the WAIT Primitive is reached, the calling Process suspends execution
until the called Process(es) complete(s). The principal purpose of the
BLOCK option is to allow the calling of several different Processes, all
of which must be completed before the calling Process will continue. If
several Processes are called with the BLOCK parameter, the calling Process
will suspend at the WAIT Primitive--whose presence somewhere below such a
CALL Primitive is obligatory--until il1 of them have completed execution.

Two of the three kinds of Processes can be triggered via the CALL
Primitive: parameter passing Processes and standard Processes. The
triggering of an Item passing process is discussed in the section
describing the SEND primitive. In triggering a parameter passing Process
with a CALL Primitive, parameters are qiven to the called Process and/or
parameters are returned to the calling Process. Parameters can be
nLznerics, string literals, keywords, or the names of Items, Queues,
Resources, Processes, Tables, and Actions. Parameter passing Processes
with return parameters can be called only with the WAIT option. Standard
Processes, which neither give nor return information may be called with
any of the three options WAIT, NCWAIT and BLOCK.

The CALL also requires that 3 priority be established for the called
Process. Priority is inverse, priority 1 preempts priority 2. This
priority may be used by the called Process when competing with other
Processes for available Resources (through the ALLOC Primitive with
$PRIORTY, see section 3.9.2).

The form for the CALL Primitive is shown in figure 3-17.

3-30

'7-- - ---

Figure 3-17. Form for the CALL Primitive

Following is a description of the fields in the CALL form:

CALLED-PROCESS NAME: The Process to be triggered.

WAIT/NOWAIT/BLOCK: Explained above.

PRIORITY: The priority associated with the triggered
Process (discussed above).

GIVEN: Up to six parameters whose values are to be
conunicated to the called Process. Left blank
if called Process is a standard Process.

RETURN: Up to six parameters whose values are to be
returned to the calling Process. Left blank if
called Process is a standard Process.

COMENT: Any user coment

3-31

-- --. ... d nu,. .. .i~ .. .I | t " '" " '. . ."- " -"
" "

"

PRIMITIVES / COMPARE

3.9.6 COMPARE

The COMPARE Primitive is used to model decisions based on user-controlled
variables or the values of system keywords and attributes. The COMPARE
performs the following operation:

IF P IS TRUE, THEN GO TO A

where:

"A" is an ENTRY label (defined by an ENTRY primitive) which is branched to
if P is true.

"P" is a predicate which can be TRUE or FALSE. It consists of a phrase:

Xl OP X2

Xl,X2 can be:
(1) signed, single precision, real or integer numbers

(2) global Variables or Constants

(3) local Variables

(4) Resources with either NWAITQ, tBUSYQ, NINACTQ or NIDLEQ
attributes (which cannot be modified by the user) (see section
3.12)

(5) SCLOCK (see section 3.16)

(6) a value specified by an Ite name and attribute

(7) a value specified by a Resource name and attribute

(8) a value specified by a Process name ad attribute

(9) an Item name

(10) a Resource name

(11) a Process name

(12) a Queue name

(13) a Table name

(14) an Action name

(15) SNODE (see section 3.16)

(16) SNXTNODE (see section 3.16)

3-32

...... .ian

(17) SLINK .see section 3.16)

(18) $TLSK 'see section 3.16)

(19) $CNOCE (see section 3.16)

(20) -in a1ha i teral (first charac-er is -) (see sec-:on .1

(21) a Queue with either NQUEUE or rQrJEUE as an attribute wicn
cannot be modified by the user) (see section 3.12)

"OP" is one of the following operators:

EQ - equal to,

NE - not equal to,

GE - greater than or equal to,

CT - greater than,

LE - less than or equal to,

LT - less than.

Operation - "Xl" is compared to "X2" using real, single precision
arithnetic. If the comparison results in the same relation as "OP", then
"P" is set TRUE and a branch is made to label "A"; otherwise, no branch is
made (the next Process Primitive is executed).

The form for the COMPARE Primitive is snown in fiaure 3-18.

Figure 3-18. Form for the COMPARE Primitive

The parameters of the form are filled in as indicated above.

3-33

. ,'-- -.-.-......... v .. - ,? - ,".-,..,. . . . • - , .. , , . . . '. " '

PRIMITIVES /CREATE

3.9.7 CREATE

The CREATE Primitive is used to create Items (note the SEND Primitive can
also create Itemis as part of its function). The initial attribute values
(defined when the Item is declared) are assigned upon creation. Each Item
created is attached to the Process. Two Itemis of the same name cannot
exist in a Process at the same time. Item definitions are specified in
the DUI. The form for the CREATE Primitive is shown in figure 3-19.

Figure 3-19. Form for the CREATE Primitive

Following is a description of the fields in the CREATE form:

ITEM1S: references to distinct Item types, instances of which are
to be created.

COMMENTr: Any user camnent.

3-34

.

PRIMITIVES " DEALUYC

3.9.8 DEALLOC

The DEALLOC Primitive indicates the release of previously allocated
Resources. it is used to represent the ralease of a Pesourca (making it
available co another reouest) upon completion of a job. The form for the
DEALLOC Primitive is shown in figure 3-20.

-':; E E 5 -_' '.E L , E:

Figure 3-20. Form for the DEALLOC Primitive

Following is a description of the fields in the DEALLOC form:

RESOURCE NAME: A reference to the Resource to be released.

NUMBER OF UNITS: A reference to the integer nunber of Resource units
to be returned to the idle state.

COMMFENT: Any user comment.

3-35

-._'-,'-:- , _, ,. , _: '" ".""-'.-','i-'." "."". -" .","... ,j L, m w,, = ,."'"' ">'" " -,- "" ' "" "" "" " v_.. , ..."-...•."".-....................,.,...."...,"."."..'...-"-""".".'-".

PRIMITIVES / DESTROY

3.9.9 DESTROY

The DESTROY Primitive is used to eliminate Items from the system, marking
the end of the time in svstem. When an Item is destroyed, statistics on
I-s time in the systa-m are -actuated for rhe simulation's Item report.

The form for the DESTROY Primitive is shown in figure 3-21.

--- , - -

Figure 3-21. Form for the DESTROY Primitive

Following is a description of the fields in the DESTROY form:

ITEMS: References to distinct Item types, instances of which are
to be destroyed.

COMMENT: Any user comment.

3-36

.-. ...-, -~~~~~~~~................ , ,.,-.-.. i.-?<:--,-<

PRIMITIVES / ENTRY

3.9.10 ENTRY

The ENTRY Primitive is used to define entry points from the branching
Primitives, BRANCH, PROB, COMPAPE, TEST and LOOP. The form for the ENTRY
Primitive is shcwn in figure 22.

Figure 3-22. Form for the ENTRY Primitive

Following is a description of the fields in the ENTRY Primitive:

ENTRY LABEL: The 1-8 character name of the entry point used by the
branching Primitive(s) which transfer control to it.

COMMENT: Any user comient.

3-37

., '... ,,,, -" i, ,:.',,,.,. ...: a : ,- _. a " - -" , --" '-. "':"'. '". ,": ." . -. ., , ,. .,_ -. -.',.'-'..'

77 7 --. 7 -7

PRIMITIVES / EVAL

3.9.11 EVAL

The EVAL Primitive is used to perform simple arithnetic functions within a
Process so that model ogic and timing can be a function of variables
rather than a constant. EV.L cperates in the following manner:
X = f(a,b)

where:

X is any variable that is changed to the value f(a,b)

"a" and "b" are arguments that can be

1. signed, single precision, real, or integer number, or

2. ner.ied Variable or Constant, or

3. named local variable, or

4. $CLOCK (simulation clock value)

where f is one of 27 functions below. All calculations are carried out in
a single precision, real arithmetic.

FUNCTION NAME RESULT

1. ADD a+b
2. SUBTRACT a-b
3. MULTIPLY a*b
4. DIVIDE a/b
5. ABSOLUTE jai
6. INTEGER returns the integer part of a number
7. POWER a**b
8. COSINE cos(a) (for a in radians)
9. SINE sin(a) (for a in radians)

10. TANGENT sin(a)/cos(a)
11. SQRT sqrt a
12. RANDOM random fraction (randm number between 0 and

1.0)
13. ARCOSINE arcosine(a) (in radians)
14. ARCSINE arcsine(a) (in radians)
15. ARCTAN arctangent(a/b) (in radians)
16. BETA random sample of the beta function with

a = power of x; a>0
b = power of l-x; b>0

17. BINOMIAL randan sample of the binomial function with
a = number of trials
b = probability of success

18. ERLANG randam sample of Erlang function with
a = mean
b = k (integer order of function)

3-38

do. ..g..

19. EXPONENT randam sample of exponential function with
a = mean

20. GAMMA randari sample of gamma function with
a= mean
b 'K

21. LOGE natural logarit ir of a; a>0

22. LOGNORML : ndam sample of log normal function with
3 = mean
b = standard deviation

23. LOGlO comimon logaritm of a; a>
24. NORMAL random sample of normal function with

a = mean
b = standard deviation

25. POISSON random sample of Poisson function with
a = mean

26. UNIFORM randm sample of a uniform function with
a = mean
b = delta (i.e., the difference betwen the

largest possible value and the mean value)

27. WEIBULL random sample of the Weibull function with
a = scale parameter
b = shape parameter

In addition to these functions the user may define his own functions

through the Table entity (see the section on Tables). The form for the
EVAL Primitive is shown in figure 3-23.

Figure 3-23. Form for the EVAL Primitive

Following is a description of the fields in the EVAL form:

VARIABLE: The local variable whose value is to be set.

FUbJ-ZION: The operation used to calculate the value of the variable.

OPERANDl: The first operand in the calculation of the new variable
("a" parameter). This may be blank, depending on the
function.

OPERAND2: The second operand in the calculation of the new variable
("b" parameter). This may be blank, depending on the
funct ion.

COMMENT: Any user comment.

3-39

! ..-..::............... .- : .- :' .-:*..•:.: -. .--';-:--,.--

PRIMITIVES / FILE

3.9.12 FILE

The FILE Primitive is used to place an Item on a user-defined Queue.

The effect of filing an Iten on a user-defined Queue is to keep it in
storage after the Process from which it is filed has ceased execution.
The form for the FILE Primitive is shown in figure 3-24.

Figure 3-24. Form for the FILE Primitive

Following is a description of the fields in the FILE form:

FILE ITEM NAME: A reference to the Item to be filed.

OPTION: The location in the Queue at which the entity is to be
filed relative to the Queue pointer. The following can be
used:

FIRST - The entity is placed first and the Queue pointer
is set to it.

LAST - The entity is placed last and the Queue pointer is
set to it.

NEXT - The entity is placed after the current Queue
pointer position in the Queue and the Queue pointer is
reset to it.

BEFORE - The entity is placed before the current Queue
pointer position in the Queue and the Queue pointer is
reset to it.

QUEUE: The Queue on which the Item is to be filed.

COMMENT: Any user coment.

3-40

fi.... -~~~~~~~~~~~~~~~~~~~~~~............................,........ ,......-......-..-.........-..-'-,..-...-----.-.;..-....,.........1

PRIMITIVES / FIND

3.9.13 FIND

The FIND Primitive is used to reset the Queue pointer on a user-defined
Queue (section 3.4) or a cross-reference set (section 3.5.2), and to
assign to a local variable a "iccator" pointer to a current position in
the Queue. The rules governing Queue pointers are covered above in the

section on user-defined Queues. The form for the FIND Primitive is shown
in figure 3-25.

Figure 3-25. Form for the FIND Primitive

Following is a description of the fields in the FIND form:

FIND OPTION: The location (FIRST, LAST, NEXT, or BEFORE) of the

Item or member of the cross-reference set to be
assigned to the variable relative to the present Queue
pointer.

ITEM NAME: The local variable which will refer to the Item or

member of a cross-reference set.

ON QUEUE: The name of the Queue or cross-reference set that is
to be traversed. If the cross-reference set is
intended, the entity type whose cross-reference set is
to be traversed is entered.

COMMENT: Any user canment.

The effect of locating an elenent with the FIND Primitive is (1) to set

the Queue pointer to the beginning or end of the ordered holding area
(i.e., FIRST or LAST) or relative to the previous location of the Queue
pointer (i.e., NEXT or BEFORE), and (2) to assign the element in the
position then indicated to the local variable.

3-41

,".."

PRIMITIVES / LOCK

3.9.14 LOCK

The LOCK Primitive prevents a ?rocess from being suspended by losing
Resources to a "higher" oricr:t' Orocess (priority is inverse, priority 1
preempts priority 2). LOCK is used to represent uninterruotable work. If
LOCK is not used, Process execution can be suspended by a higher priority
Process. When a Process loses any one of the Resources it has allocated
it stops execution and is placo d on a system-defined queue (the wait
queue) until the Resource is aqain available. The LOCK Primitive
overrides this suspension. The form for the LOCK Primitive is shown in
figure 3-26.

Figure 3-26. Form for the LOCK Primitive

Following is a description of the field in the LOCK form:

COMMENT: Any user coment.

3-42

.7,

PRIMITIVES / LOOP

3.9.15 LOOP

The LOOP Primitive causes a branch to a named entry point a specified

num~ber of times. The form for the LOOP Primitiye is shown in figure 3-27.

Figure 3-27. Form for the LOOP Primitive

Following is a description of the fields in the LOOP form:

LABEL: The name of the ENTRY label (defined by an ENTRY Primitive)
to which execution is to branch.

LOOP: Indicates the num~ber of times Primitives between the ENTRY
label and the LOOP Primitive will be executed. This
includes the initial pass. For example, if 10 was used,
then for each execution of the Process, the Primitives
between the Entry label and the LOOP Primitive would be
executed 10 times. Execution control would branch back to
the ENTRY label 9 times.

CO? ENT: Any user comment.

3-43

. k.

PRIMITIVES / PROB

3.9.16 PROB

The PROB Primitive is used to model stochastic decision making. It
indicates a probabilistic branch to a named entry point. Random num ber

selection for the probabilistic branch can be controlled by the use of the
EDIT STREAM coimand in the AUI. The form for the PROB Primitive is shown

in figure 3-28.

Figure 3-2R. Form for f-he PROB Primitive

Following is a description of the fields in the PROB form:

LABEL: The ENTRY label (defined by an ENTRY Primitive) to
which the branching is to take place.

PROBABILITY: The probability with which the branching is to take

place, expressed in (integer) percent.

COMMENT: Any user cament.

3-44

PRIMITIVES / REMOVE

3.9.17 PEMOVE

The REPOVE pr4m;t4'e is used to r_=nove an Item from a user-defined Queue.

The effect of r-9ov- n n Item is to -nake it :naccessible to other
Processes until it has been placed on another Queue (through the FILE
Primitive) or delivered to another Process through the SEND Primitive.
The form for the REMOVE Primitive is shown in figure 3-29.

- "." -- -,"- - Mi r
'

Figure 3-29. Form for the REMOVE Primitive

Following is a description of the fields in the REMOVE form:

REMOVE OPTION: The location in the Queue of the Item to be removed.
The option can be one of the following:

FIRST - The first entity is removed and the Queue
pointer is reset to the new first element.

LAST - The last entity is removed and the Queue
pointer is reset to the new last element.

NEXT - The entity associated with the current
Queue pointer location is removed and the
Queue pointer is reset to the succeeding
element to it in the Queue.

ITEM NAME: The local variable that will contain the Item which
is removed from the Queue. If there is no Item to be
removed, this local variable is set to zero.

FROM QUEUE: The Queue from which the Item is to be removed.

COMMENT: Any user comment.

3-45

............. °---.o...'%''''°' """°. "'% .'." '°''' ' ' " ' . ." . ' ' o'""°". 2 "" °" "O••"

PRIMITIVES / RESET

3.9.18 RESET

The RESET Primitive redefines the numnber of available units of a naed
Resource to plus or minus the indicated value. It is used to represent
the increase or decrease of the available nunber of Resource units. The
form for the RESET Primitive is shown in figure 3-30.

Figure 3-30. Form for the RESET Primitive

Following is a description of the fields in the RESET form:

RESOURCE: A reference to a Resource whose available units are

increasing or decreasing.

RESET BY (+/-): The nunber of units to be added to or subtracted
from those presently available. If more units are

to be made available, this value is positive. If

units are to be made unavailable, this value is
negative.

COMMENT: Any user comment.

14

3-46

PRIMITIVES / RESUME

3.9.19 RESUME

The RESUME Primitive is used to control exlicitlv the resuotion of a
Process which hias been susoended through the SUSPaND Primitive.
Resources eallocate7d t the t:me of suspension mus- be obtained again
before Process execution progresses. The requests for these Resources is
automatically handled by the RESUME Primitive. There is no preferential
treatment given to these requests. They are treated in the same manner as
an ALLOC Primitive. "he form for the RESUME Primitive is shown in figure
3-31.

Figure 3-31. Form for the RESUME Primitive

The fields V1 and Qi constitute a reference to task that is being resumed
(see SUSPEND) and the COMMENT field is any user comment.

3-47

• - ~~~~.• o °•. °.. ..-i,o,... ... °..,• -.... 4

PRIMITIVE /SEND

3.9.20 SEND

The SEND Primitive is used to send up to six Items to an Item passing
Process. If an Itam to be sent is not currently7 attached to the sendina
Process, it is automatically created. When the items are sent, the
receiving Process determines whether all the Items required by its
definition have been received. If they have, the Process then initiates;
if not, it will wait until all of the necessary Items have been received
before executing. The form for the SEND Primitive is shown in figure
3-32.

-E - ~- ---

Figure 3-32. Form for the SEND Primitive

Following is a description of the fields in the SEND form.

SEND: A reference to the Process to which items are to be sent.

ITEMIS: References to up to six Item types, instances of which are
to be sent.

COMMENT: Any user comment.

3-48

PRIMITIVES / SUSPEND

3.9.21 SUSPEND

The SUSPEND Primitive is used to suspend the Process in which it appears.

A Process that susoends itself with this Primitive may only be resumed by

another Process which uses the RESUME Primitive.
Since the RESUME

Primitive must be able to refer to the task instant
to be reswed, the

suspending Process instance must save a reference
to itself (i.e., assign

the value of the keyword $TASK to a global Variable or
send it as an

attribute of an Item) for later access by a RESUME Primitive.
See section

3.16 for a description of $TASK. The SUSPEND Primitive causes the

deallocation of the Resources allocated to the Process. The form for the

SUSPEND Primitive is shown in figure 3-33.

Figure 3-33. Form for the SUSPEND Primitive

Following is a description of the field
in the SUSPEND form:

COMMENT: Any user coment.

3-49

PRIMITIVES / TEST

3.9.22 TEST

The TEST Primitive indicates a branch to a named ENTRY Primitive if a
Resource or Queue is not avail3ble. It is used to model decision making
based on the availability of needed Resources or Queues. The form for the
TEST Primitive is shown in figure 3-34.

Figure 3-34. Form for the TEST Primitive

Following is a description of the fields in the TEST form:

RESOURCE NAME: A reference to the Resource or Queue being tested
for availability.

BRANCH TO LABEL: The name of the ENTRY label (defined by an ENTRY
Primitive) to which execution is to branch if the
Queue or Resource is not available.

COMMENT: Any user conmment.

3-50

PRIMITIVES /TRACE

3.9.23 TRACE

The TRACE Primitive starts a debugging mechanism that is useful for
analyzing the dynamics of an AISDIM -odel. The affect of the T"RACE
Primitive is to create a file that records every execution of a Process
and of the following Primitives within the Process.

START

CALL

ALLOX2

DEALLOC

END

RESUME

RESET

SUSPEND

TRACE (on or off)

These Primitives are traced because they introduce major changes in the
state of the system into a simulation run.

When the TRACE Primitive is operating, every instance of these Primitives
in every Process is recorded either for the remainder of the simulation or
until TRACE is turned off. The trace line writes out the simulation clock
time, the node in which the Primitive is executed, and the Process
executing the Primitive. The format for a trace line is the following:

T = clock time N = node name P = Process name Primitive parameter

The form for the TRACE Primitive is shown in figure 3-35.

Figure 3-35. Form for the TRACE Primitive

3-51

Following is a description of the fields on the TRACE fonn:

ON/OFF: "OV" to enable the TRACE.

"OFF" to disable tne TRACE.

COMMENT: Any user ccmmrent.

3-52

PPIMITIVES / UNLOCK

3.9.24 UNLOCK

The UNLOCK Primitive cancels the effect of a previously executed LOCK
Primitive. It is used to represent the conclusion of the uninterruptable
phase of a Process. The form for the UNLOCK Primitive is shown in figure
3-36.

Figure 3-36. Form for the UNLOCK Primitive

Following is a description of the field in the UNLOCK Primitive:

Cr-WFNT: Any user camment.

3-53 .

PRIMITIVES / WAIT

3.9.25 WAIT

The WAIT Primitive is used in conjunction with the CALL Primitive when the
BLOCK option is used. The WAIT Primitive indicates that the calling
Process is to be suspended until all Processes it triggered by a CALL with
the BLOCK option have completed and returned control to the calling
Process. It is generally used to model phenomena such as assembly points,
executive schedulers, and other events in which progress cannot continue
until several parallel activities are completed. Resources currently in
possession of the calling Process are not deallocated. The form for the
WAIT Primitive is shown in figure 3-37.

Figure 3-37. Form for the WAIT Primitive

Following is a description of the field in the WAIT Primitive:

COMMENT: Any user comment.

3-54

r-.---.- ', ' ' ''- ''''-.-V ;- :'..--. • , ',." " "' '."-' .,-.'.,." . -'. -'' ,"-"." ' ,.. .' . .- ' . ." : k "

LEGAL PATH TABLE

3.10 LEGAL PATH TABLE - NODE -'INK

The Legal Path Table (LPT) entity is the means by which the user can model
ohysical communication oaths between Resources. T.l.ically, this is

referred to as inter-node ccnunication. W1hen the rPT is not .sed, the
communication mechanisms are implicit in tie Process logic and do not
usually have explicit Resources :hat cause caoniunication queueing and
transfer delays.

Two other model elements need to be discussed as part of the LPT entity;
these are nodes and links. Nodes represent the points in an architecture
where processing occurs. Links are the communication paths between nodes.
Each node and link is actually a model Resource - the name of the
Resource being the name of the node or link. Full duplex links (denoted
by ".F" after the link name) are two Resources. One will be named the
name of the link with ".A" appended to it and the other with ".B".

The LPT consists of a four part list that 3oecifles the FROM node, a TO
node, a NEXT node, and a LINK. An example of Legal Path Tible entries is
given in figure 3-38.

FROM TO NEXT VIA
NODE NODE NODE LINK

==a ca3 Z crzza
A C C Cl
8 C C C2
C A A C1
C 9 B C2
C D D C3
D C C C4
D E E CS
0 F F Cs
E D D Ca
E G G C8
F D D C5
F G G C7
G E E cS
G F F CT
G H N C9
G I I Cli
H G G C9
I G G Cli

Figure 3-38. Sample Legal Path Table Entries

The headings indicate that to move from the FROM node to the TO node one
must first go to the NEXT node via the LINK.

The LPT is a passive entity in that it does not contribute directly to the
simulation statistics but, instead, is simply a table of values used by a
model to effect data flow through a system. It is only changed through
the Architecture Design Editor and therefore remains crnstant for any
specific simulation run. Processes reference the LPT through the ASSIGN
or COMPARE Primitives using $CNODE (current node), $NXT)ODE (next node as

3-55

- - .. " - . . . - ' . -. . . .

specified in LPT), and $LINK (the Link for the transfer) keywords (see
section 3.16).

Operation - Every Process in AISIM can be set to execute in a specific
node. Using the LPT through the keywords and tLe ASSIGN Primitive, a
Process can locate itself in the network and reference other nodes. The
referencing is done symbolically so that a Process can do this when
executing. This allows AISIM to model different architectures without
changing the model Processes.

?5

= 7-56

'*-" llii*i-i i * ,.i. b ,.l

TABLES

3.11 TABLES

Tables are user definable functions with 1 to 15 entries. Each entry
consists of an X-VALUE and a Y-VALUE. The following may be used for these
parameter values: (!) both numeric, (2) one numeric and the other
alphanumeric or (3) both alphanumeric.

Tables are accessed by using the EVAL Primitive. The EVAL FUNCTION
parameter is the name of the desired Table. Operand 1 is the X-VALUE.
Operand 2 's not used. The SET VARIABLE will be set to the Y-VALUE which
maps fran the X-VALUE.

3.11.1 Discrete Tables

If the Table accessed is discrete (TYPE is D), the Table entry's X-VALUE
must be numeric, and the X-VALUE entries must be in increasing order. The
Y-VALUE extracted from the Table is that value associated with the X-VALUE
that is equal to or less than the X-VALUE given in OPERAND 1. For
example, if an X-VALUE of 3.5 is given in OPERAND 1 and the nearest
X-VALUES in the Table are 3 and 4, the Y-VALUE associated with the X-VALUE
of 3 will be extracted and placed in the given SET VARIABLE name. If
OPERAND 1 is less than the smallest X-VALUE, the value returned is the
Y-VALE associated with the largest X-VALUE.

3.11.2 Continuous Tables

If the Table accessed is continuous (TYPE is C), all X-VALUE and Y-VALUE
entries must be numeric. The SET VARIABLE of EVAL is set by the following
rules :

a. the Y-VALUE associated with the X-VALUE that equals OPERAND 1, or

b. the interpolation of the Y-VALUE associated with the X-VALUE
which is less than OPERAND 1 and the X-VALUE greater-than OPERAND
1, or

c. the Y-VALUE associated with the largest X-VALUE, if no
interpolation is possible.

3.11.3 Alphanumeric Tables

If the Table is defined as alphanumeric (TYPE is A), one or both X-VALUE
and Y-VALUE for each entry must be a name of a model entity. The SET
VARIABLE is set to the Y-VALUE corresponding to the X-VALUE.

If OPERAND 1 in the EVAL Primitive does not correspond to an X-VALUE in
the Table referenced, an execution error message will be printed in the
analyze report and the value of the SET VARIABLE will remain unchanged.

3-57

......... ":" """"'-. ----- ..--- .-.-- . .,---.. ...,.. ,--d.-'. ,,,.'-"'"" "' " """ " " " """""'."."".."."... ""...."..... ' "....'......".-.-'".-.".-.."....."...,.-.".... -"-.".....-.."- 1

The form for the Table enrity is shown in figure 3-39.

_- , I

Figure 3-39. Form for the Table Entity

Following is a description of the fields in the Table form:

TABLE: 1 to 8 character nme of table

TYPE: C - continuous, D - discrete or A - alphanumeric.

X VALUE: x-axis value

Y VALUE: y-axis value

COMMENT: any user comment. (0 to 53 characters)

Table entities are entered using the Design User Interface EDIT ccmmand
(see section 6.1.4).

3-58

ATTRIBUTES

3.12 ATTRIBUTES

Certain AISIM constructs have associated attributes which can take as
values, (1) numerics, (2) alpha liter3ls (3) entity names, or (4'
keywords. Some attributes are user defined. Others are dynamic
attributes which are recognized and modified by the AISIM simulator.

The values of attributes may be accessed by a Process with the ASSIGN and
COMPARE Primitives. The forms for both of these Primitives use two fields
to indicate the value accessed. The first field contains the name of the
entity and the second the name of an attribute associated with it.

Three AISIM entities, Processes, Resources and Items, may have attributes
specified by the user. These attributes allow the modeler to define a
unique set of characteristics for certain entities. An example is a
channel. Channels have a physical attribute of maximum transfer rate.
This characteristic is assigned to the AISIM Resource by specifying an
attribute of RATE for the channel Resource.

Simulation experience has shown that some logic in a system is dependent
on the system's dynamics. That is, some activity is dependent on queue
lengths or the number of busy Resources. Since this phenomenon is fairly
common, AISIM has embedded features to model this. The following
attributes are built into the AISIM simulator for each instance of an
entity. These attributes may be accessed by the COMPARE and ASSIGN
Primitives, but the values for the Resource and Queue attributes may not
be changed by the user.

Entity Attribute Description

Resource NIDLEQ the number of units of the Resource which
are in an idle state

NBUSYQ the number of units of the Resource which
are in a busy state

NINACTQ the number of units of the Resource which
are in an inactive state

NWAITQ the number of Processes executing which are
waiting for a Resource unit to be
deal located

Item TAIL the sequential creation number of the Item

PRIORITY the priority of the Item

Queue NQUEUE the number in the Queue

TQUEUE the average time entities are in the Queue

3-59

A , A

CONSTANTS AND VARIABLES

3.13 CONSTANTS AND GLOBAL VARIABLES

Constants and Variables are entities used to define global parameters of a
model, that is, ,alues which may be accessed by all Processes. There is
an implicit caution which must be used when using these entities. Because
AISIM simulates multi-processing, global parameters can be accessed
"concurrently" by more than one Process. Care should be taken when
multiple Processes modify the same global Variable.

A Constant is given a numeric value before the start of a simulation. The
value must be numeric and can not be changed by the simulation. A
Variable may be set to (1) an alpha literal, (2) the value of a keyword,
or (3) to any other AISIM entity that may be accessed by the EVAL and
ASSIGN Primitives. A Variable's value may vary throughout the simulation.

The initial values of both Constants and Variables are set in the Design
portion of AISIM. The value of both entities may be reset, before the
simulation is started, in the Analysis function.

While the value of a Constant may not be changed during the simulation,
the initial value of a Variable may be changed by the user (between
periods or at break points) or by the model itself (by use of the ASSIGN
and EVAL Primitives).

Corstants and Variables may be used in place of a numeric value anywhere a
numeric value is required with the following exceptions:

1. The number of units of .a Resource may only be a Constant or a
numeric value.

2. The initial value of a Constant must be a numeric value.

The forms for Constants and Variables are shown in figure 3-40.

Figure 3-40. Forms for Constant and Variable Entities

3-60

• ... ,..-.-... . , -.• " '"-° • ,' -"--°" -'', '" .""o • " -""o "- , ...". ."' , '" " ""°. °"° " ,' "°. " ""°"""°" 'm " " b- * ' '. .,

Following is a description of the fields in the Constant and Variable
forms:

VARIABLE/CONSTANT: 1 to 8 character name of Variable or
Constant.

VALUE: .3 digit floating point or any AISIM variable
reference to a numberic value.

DESCRIPTION: Any user coament. (0 to 53 characters)

Constant and Variable entities are defined using the Design User Interface
EDIT command (see section 6.1.4).

3-61

LOCAL VARIABLES

3.14 LOCAL VARIABLES

AISIM has two kinds of variables: local and global. Global Variables are
those explicitly defined for the model and given initial values. Local
variables are ones that appear in Process Primitives but are not otherwise
defined. Local variables enable Processes to execute in parallel without
interfering with each other because each Process has an independent set.

At the beginning of the execution of a Process all'local variables are
initialized to zero. They will remain so unless other values are
explicitly assigned to them. Local variables may be assigned values with
the ASSIGN and EVAL Primitives or through parameter passing. Local
variables may be assigned the following values:

Numeric - a floating point or integer number

Global Constant or Global Variable value

Another local variable

A Resource name

A Process name

An Item name

A Queue name

An alpha literal (first character $)

The value of a keyword evaluation

Although "local ," the values of such variables can be cawmunicated from
one Process to another through parameter passing (i.e., through the CALL
Primitive). Local variables can be used to fill in any parameter slot in
any Primitive that is not an option, a label, a distribution or function,
and including:

Item attribute

Resource attribute

Process attribute

CALL given parameter

CALL return parameter

Process given parameter

Process return parameter

3-62

ALLOC Resource namne

DEALLCC Resource name

CALL Process name

CALL Priority name

ASSIGN set variable (variable 2)

COMPARE'variable

FILE Queue name

FILE Iteam name

FIND Queue namfe

FIND Item name

REMOVE Queue name

REMOVE Item name

RESUME task reference

3-63

A I

3.15ALPHA LITERALS

~3. 15 ALPHA LITERAS

An alpha literal is a character string. It consists of a $ followed by up
to seven other characters, as in

$WAIT

and

SJONES

that do not make up the name of a keyword (see next section). Alpha
literals can be used to campare strings for identity or nonidentity with
the COMPARE Primitive. They can be used as attributes. This is useful
for making AISIM models more readable.

3-64

%: %

KEYWORDS

3.16 KEYWORDS

The following keywords are defined 4n the AISIM simulator and may be used
in Process logic in any Primitive ;n which the evaluation of the keyword
results in a value which is correct in context.

Like alpha literals, these terms begin with the character "S". However,
keywords function cifferently from aloha literals. Keywords evaluate to a
value. In that sense they can be considered intrinsic functions.

$CLOCK - The value of the current simulation clock during the execution of
a simulation run. This keyword may be placed in any field of a Process
Primitive which may contain a numerical value.

$CNODE - The reference to the current node in which a Process is
executing. All Processes can be set to execute in a node in the
architecture. The node corresponds to a Resource. This keyword evaluates
to the Resource. This keyword allows - modeler to control allocation and
deallocation of a node from within the execution of a Process. This
keyword can be assigned a value. This, in effect, changes the node in
which a Process is logically executing. This is the only keyword that may
be assigned a value in the Process logic.

$TASK - The current instance of the Process in which this keyword appears.
A Process executing in a simulation can assign the value of the $TASK
keyword to a global Variable. This allows one Process to suspend itself
and another Process to resume it by referencing the Process to be resumed
with the stored value of $TASK.

$PRIORTY - The priority of the currently executing Process. This keyword
is generally used in an ALLOC Primitive to resolve Resource contention
issues.

NODE - $NODE takes one argument, a reference to a Process. Given a

Process, $NODE evaluates to the name of the node in which the Process has
been defined to execute. This is the name of a Resource. This keyword
allows a Process in AISIM to determine a destination for :messages which
request a specific Process to be executed. The node specification for a
Process is defined by a user and is associated with the START symbol for
the Process.

The following keywords directly access the legal path table and
architecture structure. Each keyword evaluates to the name of a node or
link Resource.

$NXTNODE - $SXTNODE takes one argument, a reference to a destination node.
Given a destination node, $NXTNODE assures the current node ($CNODE) of
the executing Process is the source (FROM) node. Accessing the legal path
table, $NXTNODE returns the name of the next node along the path to the
destination node. This is the name of a Resource. This keyword allows
the AISIM modeler to write Processes that perform message forwarding
through a network.

3-65

• : .. ., ..- .--• .-.o j .. -. v -.~ o. .-. -o.. .. -..-.. .-. ---. -.. .. . - •, ., , . • -..... -

$LINK(- $LINK takes one argumtent, a reference to a destination node.
Given a destination node, $LINK assumes the current node ($CNODE) of the
Process is the source (FROM) node. Accessing the legal path table, $LINK
evaluates to the name of the link to the next node along the path to the
destination node. This is the name of a Resource.

3-66

...................................
... ~ a a . a -

MESSAGE ROUTING SUBMODEL

3.17 MESSAGE ROUTING SUBMODEL

When one Process triggers another through a CALL Primitive, the called
Process is initiated in the same node as the calling Process. This is
implicit in the AISIM simulator and is true even if the called Process is
associated with a different node.

In order to model the functional distribution of Processes throughout a
network, a logical Process communication feature had to be incorporated
into AISIM. One requirement for this feature is that the delays inherent
in the network communications be accurately represented in the model so

that if a Process resident in one node initiates a Process resident in
another node, the delays and queueing effecting this communication are
taken into account. Also, AISIM is required to enable the analysis of
different architectures performing the sane functions with a minimum of
change to the model.

To satisfy these requirements a special submodel has been devised to
represent the routing of messages through an AISIM architecture and to
initiate remote Process triggering. Since different protocols for network

cammunication are conceivable, the AISIM message routing function has been
implemented as an AISIM model and included in the AISIM system library
under the name COMMUN-B. This enables an AISIM user to select and merge
this model into his own. The advantage of this approach is that the user
can review the logic in this suhnodel, determine its appropriateness to
his problem and modify the message routing submodel if necessary. This
will not often be the case because the message routing suhmodel applies to
many ccanunications networks.

The message routing submodel uses the architecture and Legal Path Table of
a model through the use of the system-defined keywords and the Process
Primitives.

The message routing submodel consists of one Item representing the message
dispatched through the system architecture, four Processes representing
the activities required for the inter-node communication and other
supporting entities. Everything required for this model is included in
the AISIM system library and can be merged into a user's model in a simple
operat4on. (See section 10.2 of the Library User Interface.)

Additional details on the message routing submodel are provided in
appendix D.

3-67

SECTION 4

AISIM SYSTEM OVERVIEW AND SYSTEM INITIALIZATION

The AISIM user interface consists of the following levels of operation:

Level 1 - Not connected level
Level 2 - VAX/VMS Ready level
Level 3 - AISIM READY level
Level 4 - Level 4A - Design User Interface (DUI) Sublevel

Level 4B - Analysis User Interface (AUI) Sublevel
Level 4C - Replot User Interface (RUI) Sublevel
Level 4D - Hardcopy User Interface (HUI) Sublevel
Level 4E - Library User Interface (LUI) Sublevel

Level 5 - Level 5Al - Process Editor Interface (PEI) Sublevel

Level 5A2 - Architecture Design Editor (ADE) Sublevel
Level 5El - Mergein (MI)
Level 5E2 - Mergeout (MO)
Level 5E3 - Checkin (CI)
Level 5E4 - Checkout (CO)
Level 5E5 - Convert (CONV)

The relationship of these different levels is shown in figure 4-1. The

current level of operation determines the system's response to a given

command. For example, the command EDIT MAD is valid only in the DUI

level. Each level prompts the user for input with a specific symbol or

phrase. For example, the AISIM READY level prompts with the phrase "AISIM

READY" on the screen when it expects a comnand to be entered from the
keyboard. The DUI level, on the other hand, prompts with an "*". The

prompt for each level is shown in the figure in its box. The commands

used to go from one level to another are shown next to the arrows
indicating the direction of transfer.

4-1

................................

.'..,." -..- .,. ..'..... ".-"-. . ..-,.-... ...-"-... -.... ,..- .-.-. ,. ...-'..',.,,:-,,.'-,..'".'.:,..' ,..v ,-,:

4--2

..
D .

4.1 REACHING THE AISIM READY LEVEL

The procedure for logging on is specific to a given computer system and
the user is referred to local references for gaining access to the top
level of the system on which AISIM is hosted. (This section assumes a VAX
compatible host. For other installations please refer to installation
specific instructions.) When prompted with:

$

the user has reached Level 2 of AISIM operation. To reach Level 3, the
user enters the command:

AISIM

When execution of this command completes, an audible 'beep' will be heard

at the terminal and the AISIM READY prompt will appear on the terminal.

4-3

..° ,, " . . - , ° - . • . ,. , • ° .. ° . - . . - ° . , - °- ° , , - o -,. , , ° o . ., - ,

SECTION 5

AISIM READY LEVEL

At the AISIM READY level of operation a number of commands are available

to the user for directing the course of the session (ANALYZE, CHANGE,
DESIGN, END), for manipulating the database (BACKUP, EDIT, RESTORE,

CONVERT), for requesting information about AISIM operation (HELP), for
requesting model data (PRINT, HCOPY, GENLIST) and for deleting temporary
AISIM files (DELFILE). These commands are summarized in the camand

summary in figure 5-1 and described in the following sections. These
coimands may be entered only while in the AISIM READY level of operation
(i.e., when the user has received an AISIM READY prompt).

5-1

ANALYZE [PROJCT (project) I (NOXLATE1 [TERM(terminal)]
A [P (project)] [N] [T (terminal)]

BACKUP [PROJOZT (project)]
[P (project))I

CHANGE [PROJCT (pro-;ect)i iTERM(teninal)]
C [P(project)] [T(terminal)]

DELFILE (PROJBCT (PROJCT)]
DELF [P (project)I

DESIGN [PROJCT(project)] (TERM(terrinal)]
D [P(project)] [T(terminal))

EDIT [PROJCT(project)] [TRACE]
[P (project)]

END

GENLIST [PROJCT(project)] [TERM(terninal)]
GLIST [P(project)] [T(terminal)]

HCOPY [PROJCT(project)] [TERM(terminal)]
HC [P(project)] [T(terminal)]

HELP

LIBRARY
LIB

LIST
L

LIS IOFF

LISTON

MSGOFF

MSCON

PRINT [PRINT (project)]
P [P(project)]

REPLOT [PROJCT(project)] [TERM(teririal)]
RP [P(project)] [T(tem~inal)]

RESTORE [PROJCT (project)]
[P (project) I

Figure 5-1. AISIM READY Level Camnand Su.mary

5-2

AISIM READY / ANALYZE

5.1 INITIATING AN ANALYSIS SESSION

Simulation of the model developed under the DUI sublevel (see section 5.5)
is accomplished through commands available in the AUI sublevel. The AUI
is accessed from the AISIM READY level by issuing the following command:

ANALYZE [PROJECT(project)) [NOXLATE] [TERM(terminal)]

A [P(project)I [N] [T(terminal)]

where:

[PROJECT(project)] is an optional parameter indicating the project
database to be used. If omitted, the project is assumed to be the last
project specified in a previous AISIM READY level command.

(NOXLATE] is an optional parameter indicating that, FOR THIS ANALYSIS
SESSION ONLY, no translation from the "project" database is to be
performed, and simulation input from a previous translation is to be used.
The "previous translation" must have been performed. If this parameter is
omitted, the translation will be performed.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTI00 terminal with Selanar graphics

The system will respond with the following:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 4.0
TER INAL: Terminal type specified in command or default
PROJECT: Project specified in command or default
USER: Userid
XLATE/NOXLATE: XLATE/NOXLATE, depending upon command.
ENTER YES TO PROCEED, NO TO ABORT...

Typing yes will cause the system to complete the transfer to the AUI
sublevel. A 'beep' will be given at the terminal and the AUI prompt (#)
will appear when the system is ready to accept commands at the AOI
sublevel. These comands are discussed in section 7.

During an Analysis session, various files are created. The translator
creates a file called project.XLT. This file is a formatted file
containing all of the entity data from the project data base, and it is
used as input to the simulator. An analysis data base called project.PLT
is created to hold any plot data generated by the simulation which the

5-3

user wishes to save. This file is not created if a copy already exists.
The simulation report is stored in a file called project.RPT. Any trace
output is stored in a file called project.TRC. All of the above files
remain at the end of a simulation run. Three temporary files,
PLOTDEF.DAT, PLOTDATA.DAT and SAVEPLOT.DAT, are used during an Analysis
session to store plot data and definitions, and they are deleted when the
simulation conpletes.

5-4

AISIM READY / BACKUP

5.2 BACKING UP A DATABASE

To provide a backup of a project database, especially useful for saving a
copy of the present model design before it is altered or modified, enter
the following comnand:

BACKUP [PROJECT(project)]

BACKUP [P(project)]

where:

[PROJECT(project)] is an optional Parameter indicating the project
database to be backed up. If omitted, the project is assumed to be the
last project specified in a previous AISIM READY level command.

The system responds with the following:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODUCTION VERSION 4.0
TERMINAL: Default terminal type
PROJECT: Project specified in command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause a backup copy of the project to be stored in a

database file named project.BCK. A "no" response will abort the ccmmand.

5-5
.

5-5..

AD-AIEI 556 RSIN (AUTOMATED INTERACTIVE SIMULATION MODELING SYSTEM) 2471f
VRX VERSION USER'.. (U) HUGHES AIRCRAFT CO FULLERTON CA
GROUND SYSTEMS GROUP S KNEEBURG FED 85 ESD-TR-95-127

UNCLASSIFIED F33615-81-C-5099 F/6 9/2 ML

1.0ILII0J W5
.2

1 1.

1U - J
0

1111.2 .4 -.6

MICROCOPY RESOLUTION TEST CHART
NA4TIONAL. BUREAU OF STANARS -1963 -A

.

AISIM READY / CHANGE

5.3 CHANGING THE CURRENT PARAMETERS

The current parameters of an AISIM session (PROJECT and TERMINAL) can be

changed via the CHANGE command. The syntax for the CHANGE command is as
follows:

CHANGE [PROJECT(project)] [TERM(terminal)]

C [P(project)] [T(terminal)]

where:

[PROJECT(project)] is an optional parameter indicating the new project

database to be used. If omitted, the project default value remains
unchanged.

[TERM(terminal)] is an optional parameter indicating the new terminal type

to be used. If amitted, the terminal type default value remains
unchanged. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTI00 terminal with Selanar graphics

This command causes the current default project and terminal to be set to
the names entered. The current default parameters are then listed as
follows:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODLrrION VERSION 4.0
TERMINAL: Default terminal type
PROJECT: Default project
USER: Userid

5-6

::/ : :.. .. .-...... ".:..:. ... ,. ::.:. ... ",:-.: .: i:,::.:.:

AISIM READY / DELFILE

5.4 DELETING PROJECT FILES

The DELFILE command is used to delete the following five files for a
specified project:

1) project.XLT

2) project .WDB

3) project.RPT

4) project.LST

5) project .TRC

To delete these files, the user types:

DELFILE (PROJECT(project)]

DELP (P(project)]

where:

[PROJECT(project)] is an optional parameter specifying the project name
for the files. If omitted, the project is assumed to be the last project
specified in a previous AISIM READY level command.

The system responds with the following:

CURRENT PARAMETERS IN EFF 'T:
VERSION: PRODUCTION VERSION 4.0
TERMINAL: Terminal type default
PROJECT: Project specified in command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the files to be deleted. A "no" response will
abort the command.

5-7

-,,,,, ,.%, *, a. *..W .. .- ..,*,,.,, -.mjim. "W. .".. '

AISIM READY / DESIGN

5.5 INITIATING A DESIGN SESSION

A project database is created/modified using the commands available in the
DUI. The DUI is accessed from the AISIM READY level by issuing the
following com, and:

DESIGN (PROJECT(project)] [TERM(terminal)]

D [P(project)] [T(terminal)]

where:

[PROJECT(project)] is an optional parameter indicating that the desired
project file to be acted upon by the cannard is "project", where "project"
is a standard alphanumeric file label containing 1-8 characters beginning
with an alpha character and containing no special characters or imbedded
blanks.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If aitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VT100 terminal with Selanar graphics

The following is displayed after entering this comand:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODLCTION VERSION 4.0
TERMINAL: Terminal type specified in the camand or default
PROJECT: Project specified in the command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

Typing YES causes the completion of the level transfer. The terminal will
display:

CREATING WORKING DATABASE

Followed by:

..... COPY COMPLETE

The DUI prompt (*) will appear when the system is ready to accept comands
at the DUI sublevel. These commands are discussed in section 6.

The project database is stored in a database file named project.DBF. The
working copy of the database is stored in a database file named
project .WDB.

5-8

... ° . . .

AISIM READY / EDIT

5.6 VIEWING OUTPUT REPORTS

To access the model simulation report or model trace interactively on the
terminal (via the EDT editor), enter the following comnnand:

EDIT [PROJECT(project)]

EDIT [P(project)]

or

EDIT [PROJeCT(project)) [TRACE]

EDIT [P(project)] [TRACE]

Result:

The EDT editor is entered with the file to be edited set according to the
project. All EDT editor commands can be used on this file. The file is
either the project report file (this is the default) or the project trace
file. See section 11.3 for a brief discussion of relevant EDT text editor
commands.

5-9

I . - .. .- ° .. o % o. . % ., -. . . .° • . -° °° . - . . ° .. ° .° ° ° . ° , ° . . ° , . . ° . . .Q % . ", °Jq

AISIM READY / END

5.7 RETURNING TO VAX/VMS READY LEVEL

To return to the VAX/VMS Ready level fram the AISIM READY level, the user
types the comand:

END

The system will return to the VAX/VMS Ready Level and the screen will
display

$

5-10

AISIM READY / GLIST

5.8 CREATING A MODEL LISTING

The GENLIST command is used to produce a listing of a model without having
to enter the AUI level and perform a complete translation of the model.
The listing is identical to the Initialization Report section of the
output report (see the section on AISIM Simulation Results Reporting).
Elenents of this report are:

1) Global Constant Definition

2) Table Definition

3) Global Variable Definition

4) Item Definition

5) Queue Definition

6) Resource Definition

7) Architecture Legal Path Definition

8) Action Definition

9) Process Definition

10) Load Definition

11) Scenario Definition

To obtain a listing, the user types:

GENLIST (PROJECT(project)] [NOXLATE] [TEIRM(terminal)]

GLIST [P(project)] [N] [T(terminal)]

where:

(PROJ 'T(project)] is an optional parameter specifying the project
database for which a listing is desired. If omitted, the project is
assumed to be the last project specified in a previous AISIM READY level
command.

[NOXLATE] is an optional parameter indicating that the listing of the
model will be from a previous translation of the model. If this parameter
is omitted, a translation will be performed. (The translation listing is
stored in a tenporary file; the user's current translation file, if there
is one, is not affected by this procedure.)

5-11

...... tlSm -J . 5
5 4..-...'P*mJii *"d'." ili.....

(TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTl00 terminal with Selanar graphics

The system responds with the following:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 4.0
TERMINAL: Terminal type specified in comand or default
PROJECT: Project specified in command or default
USER: Userid
XLATE/NOXLATE: XLATE/NOXLATE, depending upon command
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the listing to be created and a copy to be
autanatically printed. A "no" response will abort the command.

The listing is stored in a file named project.LST.

5-12

* r- -S , r2 -- .--. =-..- -- - -- -- - - - - - - - - - - - - - - - - - - ----, . - . . - -, ,- -- - - ' - - . - "

AISIM READY / HCOPY

5.9 HARDCOPY OUTPUT OF THE PROCESS FLCWCHARTS

Hardcopy graphics of Process flowcharts are obtained in the Hardcopy User
Interface (HUI). The HUI is accessed from the AISIM READY level by
issuing the following -wommand:

H1ZOPY [PROJECT(project)] [TERM(terminal)]

HC [P(project)] [T(terminal)]

where:

[PROJECT(project)] is an optional parameter indicating the project
database with the Processes of interest. If amitted, the project is
assumed to be the last project specified in a previous AISIM READY level
command.

[TER (terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If emitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A terminal
HP23 - HP2623 terminal
TEX - TEK4105 terminal

The system will respond with the following:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 4.0
TERMINAL: Terminal type specified in the command or default
PROJECT: Project specified in command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the HUI to be invoked. The system will then
prompt the user for all required information (see section 9 on the HUI).

Note: This function is not available on a Vrl00 terminal.

5-13

... -'. ". : ,/ .- ,v-.-...',.-.'..',..- .'.--...-.....-...-...,...-,.-......".-.-"..,..-...

AISIM READY / HELP

5. 10 OBTAINING HELP FROM THE SYSTEM

To obtain help from the system, type the following command:

HELP

The user will receive sumary help information on all canuands.

5-14.

AISIM READY / LIBRARY

5.11 EXERCISIOG THE LIBRARY FACILITY

The Library User Interface (LUI) allows the user to do the following:

_. Move entities from a model project database into a storage area
called a "buffer".

2. Move entities from a "buffer" into the database of another model
project.

3. Move entities from a "buffer" into a library of model entities.

4. Move entities fram a library to a "buffer".

5. Convert a pre-version 4.0 project database to a version 4.0
compatible project database

The LUI is entered by issuing the command:

LIBRARY

LIB

The system will respond with the prompt:

LIBRARY READY

and the user may invoke any of the LUI sublevels listed in the LUI Command
Sunmary (see section 10).

5-15

AISIM READY / LIST

5.12 LISTING THE CURRENT OPTIONS

To list the current options in effect, type the following ccamand:

LIST

L

The system will display the current options in effect, including PROJECT,
USER, VERSION, and TERMINAL.

5-16

............

AISIM READY / LISTON

5.13 LISTING THE COMMAND PROCEDURE LINES

If a user is having problems fran the AISIM READY level or LIBRARY READY
level which may stem from missing system files or an operating system
problem, the user can set a flag so that all of the files which control
the execution of an AISIM session will be displayed as they are executed.
This flag is set by typing the following cam-and:

LISTON

When this option is in effect, all VAX/VMS commands which set up an AISIM
session will be displayed at a user's terminal as they are executed.
Viewing the ccomands as they execute may help a user determine where a
problem is occurring.

5-17

. - , . . .-- - - .- - . -
. -- " ." .- .- ., .- -- .-" ," -' "- "- -''- ---; G ' '-''. '-,' '-' " '-.'-.''--'. -''..- .- -. i- - i-i --;. ,.- - ' -' .'.-'.. L ' .; -'.'-- -...-.

.i " ."". : - "" " .. .ur" 'rn" " U IIt i i* U II to11 I • U III IE" p , - l

AISIM READY / LISTOFF

5.14 DISABLE THE LISTON OPTIONS

In order to disable the LISTON option, i.e., to inhibit the displaying of
VAX/VMS comands as they are being executed, type the following comand:

LISEOFF

This cammand disables the command listing mode initiated by the LISTON
ccannanad.

5-18

AISIM READY / MSGOFF

5.15 DISABLE AISIM MESSAGES

Upon invoking each AISIM function, the user is presented with the current
version, terminal type, project, etc., and asked if (s)he wants to
continue or abort. These messages and prampt can be suppressed by typing
the following cammand:

MSGOFF

When the user invokes a function, control will be transferred directly to
that function without further prompting.

5-19

.

SFr - p u- -

AISIM READY / MSGON

5.16 DISABLE MSODFF FEATURE

If the user has disabled the AISIM messages and prompts via the MSGOFF
command, the messages and prompts can be turned back on via the following
command:

MSGON

Following this command, the user will receive the version, terminal type,
project, etc. messages and prompt to continue whenever an AISIM function
is invoked.

5-20

.'," -'.'." L-'o ." .-..'. '. ",- ".-~~.. . . . '... 'o"..... o".. .. .', . ..- ", . -', --..- - .-. "..
S I

AISIM READY / PRINT

5.17 PRINTING OUTPUT REPORTS

To request printing of the model output report, type the following
comand:

PRINT (PROJECT pro-ec) I

P [P(project)]

where:

PROJECT(project) is an optional parameter indicating which project's

report file is to be printed. If omitted, the project is assumed to be

the last project specified in a previous AISIM READY level command.

Result:

The output report (project.RPT) of a project is printed. This is a report
of the standard results of a simulation run.

NOTE: The output report is automatically printed at the conclusion of an
Analysis session.

5-21

AISIM READY / REPLOT

5.18 INITIATING A REPLOT SESSION

The Replot User Interface (RUI) allows the user to display plots which

were saved during previous Analysis sessions. The canand to invoke the

RUTI is as follows:

REPLOT [PROJECT(project)] [TERM(terminal)]

R (P(project)] [T(terminal)]

where:

[PROJECT(project)] is an optional parameter indicating the project

database used in creating the saved plots. If omitted, the project is

assumed to be the last project specified in a previous AISIM READY level
comand.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105
VT - VTl00 terminal with Selanar graphics

The system will respond with the following display:

CURRENT PARAMETERS IN EFFE)CT:
VERSION: PRODUCTION VERSION 4.0
TERMINAL: Terminal type specified in command or default
PROJECT: Project specified in command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the system to complete the transfer to the
RUI. The RUI prompt ($) will be displayed when the system is ready to
accept commands at the RUI sublevel.

5-22

..°.•-. % % 4 .-. -.* .. " % . o% . " .%%" . . .

AISIM READY / RESTORE

5.19 RESTORING A DATABASE (AFTER A CATASTROPHE HAS OCCURRED)

This command is used in conjunction with the BACKUP command. If the user
was editing the original database and had issued a BACKUP command against
this database, then a copy of the original database exists. The RESTORE
command causes the damaged original database to be replaced with this
backup copy.

To restore a previously backed-up database (only necessary if a
catastrophe has occurred which altered the project database, or it is
desirable to restart a model from a known configuration), enter the
following cammand:

RESTORE [PROJECT(project)]

RESTORE [P(project)]

where:

[PROJECT(project)] is an optional parameter indicating the previously
backed-up project database to be restored. If omitted, the project is
assumed to be the last project specified in a previous AISIM READY level
command.

The backed-up copy of the database, called project.BCK, will be copied
onto the damaged database and will have the database name project.DBF.

5-23

<- ". ",-".- " .- ". ",-": ". v "- v . ". ".- .- " . ".. - :. .',. "....-. ,'. ',.'.,',

~Z-._._- 16

SECTION 6

DESIGN USER INTERFACE (DUJI)

The DUI and its lower levels are used to define a model by creating,
modifying, or deleting AISIM model entities. The Action, Constant, Itemn,
Load, Process, Queue, Resource, Scenario, Table, and Variable entities are
created and edited at the DUI level, using the EDIT cmmand. The Process
entities which represent operations in the modeled system are created and
edited at a sublevel of the DUI level called the Process Editor Interface
(PEI). The PEI is invoked by issuing the EDIT commtand (at the DUI level)
and specifying a Process as the entity to be edited. A system1
architecture and its related Legal Path Table, nodes, and links are
defined in a second sublevel of the DUI called the Architecture Design
Editor (ADE). The ADE is invoked by issuing the ARCH command at the DUI
level.

When creating and editing entities in the DUI level, the system prompts
the user for further information by use of forms. Each form specifies the
required and optional attributes of its respective entity-type. The areas
on which information is to be entered appear in "reverse video" (dark
characters on a light background), and indicate the attributes that are to
be supplied by the user.

Each time the user presses the keyboard carriage return key, the character
cursor is positioned to the start of another designated area. The user
enters parameters requested by the form by keying in the desired
alphanwxnric information. If the user changes his mind about the
parameters previously keyed in, he may alter them by merely writing over
the old information. When the user is satisfied with the contents of the
form, he inputs it to the computer by exiting the form. Below is a
canplete description of the use of forms.

While the user is in the DUI, all changes are made to a working copy of
the user's database. When the user issues a SAVE command during or at the
end of the DUI session, the working database is copied back into the
user's real database. This procedure enables the user to change his/her
mind about changes made in the working database and to protect the user's
real database in case the computer crashes during a DUII session.

The AISIM DUI commuands used to input, modify, and delete entities from the
model, are illustrated in figure 6-2 and described on the pages that
follow it.

6-1

USE OF THE FORMS EDITOR

This section describes the use of the forms editor on the various
terminals. Figure 6-1 is a chart which describes the keys used to achieve
specific movements through a form. Following the figure is a description
of each of the ways of moving through a form.

UP DOWN LEFT RIG-IT ENTER +-FIELD -FIELD

HP2647A Fl F2 F3 F4 F5 (cr> F6

HP2648A F1l F2 F3 F4 F5 (cr> F6

HP2623 F1 F2 F3 F4 F5 <cr> F6

TEK4105 F1 F2 F3 F4 F5 <cr> F6

MTOO <-- -- PFl <cr> FF2

Figure 6-1. Terminal Profiles

UP - If the cursor is in a block of fields, such as Resource attributes,
The cursor will move up to the field above it. If the cursor is in a
single field or at the top of a block, the cursor will move to the end of
the next field above it. if there are no fields above it, the cursor will
wrap to the end of the last field in the form.

DOWN - If the cursor is in a block of fields, such as Resource attributes,
the cursor will move down to the field below it. if the cursor is in a
single field or at the bottomi of a block, the cursor will move to the
beginning of the next field below it. If there are no fields below it,
the cursor will wrap to the beginning of the first field in the form.

LEFT - The cursor will move one position to the left in the current field.
If the cursor is at the beginning of a field, it will move to the end of
the previous field. if the cursor is at the top of the form, it will wrap
to the end of the last field in the form.

RIGHIT - The cursor will move one position to the right in the current
field. If the cursor is at the end of a field, it will move to the
beginning of the next field. If the cursor is at the end of the form, it
will wrap to the beginning of the first field in the form.

ENTER - Cut the form and send the data in the form to be processed by the
AISIM system.

6-2

+FIELD Move the cursor to the '-e*inning of the next field in the form.
If the cursor is at the end of the form, it will wrap to the top of the
f orm.

-FIELD - Move the cursor to the end of the previous field in the form. If
the cursor is at the top of the form, it will wrap to the end of the last
field in the form.

The BACKSPACE key can also be used to back up and make changes in a field.

Each time a user advances from one field to the next, the terminal 'beeps'

to signal the change in fields.

6-3

L ISTTI-M
LIST ~ ~ EN (I TY fSE

EDI ~ ~ F TT() Cw

Figur 6-2 Desgn UenteraeMouad

6-4 VLA

.. * **** ** **. -..... . -...... -...-.HELP% VALID*. *.-*.-:.*- -

6.1 DUII CCflIAND SLI-VYARY

Figure 6-3 contains a siirtary of the DUI level camnands.

ARCH
A

COPY {erntity-type} , {ex .sting-nane1 , new-nameI
C

DELETE {entity-type , {entity-name)/*
DEL

EDIT {entity-typei , entity-name1 , [OWA.EWI
E

END

HELP

LIST {entity-type)
L

SAVE

Figure 6-3. DUII Ccmunand Swrmary

6-5

DUI / ARCH

6.1.1 DUI COMMAND: ARCH

The ARCH command is used to invoke the Architecture Design Editor (ADE).

This camand is valid only in the DUI Ready Level.

COMAND SYNTAX:

ARCH

A

FUNCTION RESULT:

The ADE is invoked so that the architecture is built under the project
designated by the DESIGN conmand. A # prcmpt is provided for the user to
input ADE commands. These commands are discussed in section 6.3.

6-6

... *.
.° . ° % • ° - , , o. - . . . •-. °.•o ,. o°.- , . .°-. , •-.

W " " -. - -.-- .
-

- - . - - . , . -

DUI / COPY

6.1.2 DUI COMMAND: COPY

The COPY command is used to create a copyy of an existing entity.

COKM ND SYNTAX:

COPY tentitv-voe}, {existing-namne , {new-namel

C

where:

{entity-typel is a required parameter indicating any valid entity type.

Entity-type may be any of the following:

Entity-type Acceptable Abbreviation

Action A

Constant C

Item I

Load L

Process P

Queue Q

Resource R

Scenario S

Table T

Variable V

texisting-namel is a required parameter identifying the existing entity whose
parameters are to be duplicated.

(new-name} is a required parameter which specifies the name of the new entity
whose parameters are duplicates of the "existing entity".

If entity type, existing-name or new-name is missing or invalid, the user
is prompted.

A carriage return entered in response to any prompt aborts the command and
returns the user to the DUI Ready state - * prompt.

6-7

DUI / DELETE

6.1.3 DUI COMMAND: DELETE

The DELETE command is used to eliminate a named entity of a given type
fram the user database. A restriction on the use of this camand is that
Resources associated with architectural nodes or links cannot be deleted
outside of the Architecture Design Editor sublevel.

COMMAND SYNTAX:

DELETE fentity-type}, fentity-narne}

tentity-typel, {entity-name} ,..., {entity-name}

{entity-type} ,*

DEL

where:

fentity-type} is a required parameter indicating any valid entity type.
The valid entity types are listed in section 6.1.2.

{entity-name} is a required parameter indicating the name of the entity to
be deleted. It is permissible to give a list of entity-names, of the same
type, each member of which is separated by a cama.

* is a parameter used indicate all of the entities of the specified type
are to be deleted.

If entity-type or entity-name is missing or invalid, the user is prompted
for a valid parameter.

A carriage return in response to the prompt aborts the command, and the
user is returned to the DUI Ready state - * prompt.

FUNCTION RESULT:

If the named entity is not a Resource associated with a architectural node
or link, the entity will be deleted fran the user's working database. If
the entity is a Resource associated with a node or link, the user will be
given the message:

" entity " IS ASSOCIATED WITH THE ARCH. AND CAN ONLY BE DELETED IN THE ADE

where " entity " is the name of the entity to have been deleted.

When there is more than one such Resource listed in the command to delete
the user will be given the above message for each one.

6-8

DUI / EDIT

6.1.4 DUI COM-MND: EDIT

The EDIT caonand is used either to create an entity, or to change an
existing entity.

COMMAND SYNTAX:

EDIT {entity-type}, {entity-name}, [OLD/NEW]

E

where:

{entity-type} is a required parameter indicating any valid entity type.
The vaid entity types are listed in section 6.1.2.

{entity-name} is a required parameter indicating the name of the entity to
be edited.

[OLD/NEW] is an optional parameter indicating that the named entity is to
be created (NEW), or that the named entity exists (OLD) and is to be
changed. If the [OLD/NEW] parameter is entered incorrectly, the user is
prompted for confirmation to continue the command. The default for this
parameter is OLD.

FUNCTION RESULT:

If the entity-type specified is Process, the PEI level (see section 6.2)
is automatically invoked. If any other valid entity type is specified,
the user is presented with a form to describe that entity. The forms for
the entities are shown in figures 3-1 through 3-4, 3-6 through 3-8, 3-39,
and 3-40. The user must fill out the form to input the completed entity
into the working database. The user is then returned to the DUI Ready
state - * prompt.

6-9

• • °% ° - " o • • o° ° .o " .° . " • o . ° - " o " o . " 4j o° % " . ° ,° . " . o" o , °°° " ." ", " . ° ." • - .. " . .. ' - -. " -.

II

DUI / END

6.1.5 DUI COMMAND: END

The END camand is used to terminate a DUI session.

CCMMAND SYNTAX:

END

FU TION RESULT:

The Design session is ended. The working database is closed. If a SAVE
comand has not been given since the last EDIT camand, the user is asked
if the working database is to be saved. The query is:

SAVE (Y/) ?

If the user answers "Y", the working database is saved into the real
database and the session is ended. Control is passed to the AISIM READY
level (level 3). If the user answers "N", the session is ended and the
working database is not saved. Control is passed to the AISIM READY level
(level 3). Depressing the RETURN key in response to the SAVE query aborts
the END comnand, and returns the user to the DUI Ready level - * pranpt.

6-10

_ " '...' ",__..,.,,, .%,,,.. j

DUI / HELP

6.1.6 DUI COMMAND: HELP

The HELP command lists the commands currently available to the user during
a DUI session.

This command may be used any time during a DUI session.

COMMAND SYNTAX:

HELP

FUNCTION RESULT:

The acceptable c-nmarijb (i.e., the ones valid at the current level) are

listed.

HELP displays the following commands:

ARCH A COPY C DELETE DEL EDIT
E END LIST L SAVE

6-11

.

DUI / LIST

6.1.7 DUI C(OMAND: LIST

The LIST comand displays all entities of a specified type. Included with
each entity is its name and description.

COMMAND SYNTAX:

LIST {entity-type)

L

where:

{entity-type} is a required parameter indicating any valid entity type.
The valid entity types are listed in section 6.1.2.

If {entity-type} is missing or invalid, the user is prompted for a valid
entity type.

A carriage return entered in response to the prompt aborts the command,
and the user is returned to the DUI Ready state - * prompt.

FUNCTION RESULT:

The user is presented with a list of all existing entities of the
requested type.

6-12

, -~ v i ... L ' [- .- . - ' - ' -
.. -. .'- o .--.... -.. . -- .'..-

DUI / SAVE

6.1.8 DUI CCK4MID: SAVE

The SAVE command copies the contents of the working database into the
user's permanent database.

CCMMAND SYNTAX:

SAVE

FUNCTION RESULT:

The real database is replaced with the contents of the working database,
and the user is returned to the DUI ready state - * prompt. The command
is useful when the user is defining a large system. With the SAVE command
the user saves the model design up to the point at which the command is
given. This protects that portion of the design from computer failures.

6-13

|:: : ::i - :- ";: : ,: i":" : :' ,: •:-: :<;:,,......................................".. "........"...........,.......-..,; - . .

6.1.9 Termination of a DUI Sess:on

As mentioned earlier, a DUI session is terminated by issuing the END
command. Syntax and results are described in the preceeding section. The
DUI session is ended. The wrking database is closed. If a SAVE command
has not been given since the last EDIT command, the user is asked if the
working database is to be saved. The query is:

SAVE (Y/N)?

If the user answers "Y", the working database is saved into the real
database and the session is ended. If the user answers "N", the session
is ended and the working database is not saved. Depressing the RETURN key
in response to the SAVE query aborts the END command, and returns the user
to the DUI Ready state. When the SAVE query is answered, control is
returned to the AISIM READY level and the AISIM READY prompt is displayed.

6-14

. ." ".°-. .-.".. ".- .-. ".

6.2 Process Editor Interface (PEI)

The PEI, coupled with the capabilities of the graphic terminal, allows the
user to describe graphically the logical flow of an operation which he
wishes to model. The PEI is used to build Processes which model
man-machine interaction as well as data processing functions (software
logic). A Process is composed of Primitives which are symbols that
represent the individual steps in an operation. Using the PEI commands
which are described below the user arranges the Primitives in an order
that describes the Process.

6.2.1 Use of the PEI

The systen transfers control from the DUI to the PEI when the user issues
the following command:

EDIT PROCESS, {entity-namel, [OLD/NEW]

E P, {entity-name}, [OLDA4EI

where:

{entity-name) is required parameter indicating the name of the Process to
be edited.

(OLD/NEW] is an optional parameter indicating that the named entity is to
be created (NEW) or that the named entity exists (OLD) and is to be
changed. If the (OLD/NEW) parameter is entered incorrectly, the user is
prompted for confirmation to continue. The default for this parameter is
OLD.

When the PEI is entered, the screen is blanked. If a Process has already
been created, the first screen of Primitives is displayed fram the START
symbol down. If the Process is new, a form is displayed which requests
information about the Process (see section 3.8). The user must complete
the form to input the PROCESS into the database. The form is cleared from
the screen and the START and END Primitives of the new Process are
displayed on the screen. At this point, a pound sign (#) prompt will be
displayed indicating that the user may issue any of the PEI commands. The
PEI commands, which are described on the following pages, are used to
select, position, and describe the Primitives to create a Process. A
sample Process is shown in figure 6-5 (section 6.2.10). In the following
camand descriptions, "position" refers to the numbers appearing at the
left side of the figure.

There are two modes in the PEI: DRAW and NODRAW. Under DRAW made, all
changes to Primitives on the screen are reflected in the display. Under
NODRAW mode, changes are not reflected in the display until the user
explicitly requests that the display be updated. When the user first
enters the PEI, DRAW mode is the default. If the user changes the mode,
the change will stay in effect for all subsequent uses of the PEI until
changed by the user or the user exits the DUI. These modes are explained
more fully in the PET DRAW and NODRAW commands (sections 6.2.6 and
6.2.11).

6-15

BOI'CM
B

Change (position}
C

DELETE {first position}, [number of consecutive positions]
DEL

DOWN (nunber of positions]

D

DRAW
DR

END
E

HELP

HOLD {position)
H

MENU
M

NODRAW
N

PLACE [Primitivel, [position]
P

REDRAW
RED

TOP
T

UP [number of positions]
U

Figure 6-4. PEI Comand Stauary

6-16

• - .°" " ° ,- = . . .=- "oo- / ,' .•°-o - .° . .m p . b , o " . . °• o -. -. .. ° • •• -.* :.. ...: z . __.....'.. .-.. . .'.. . .-.- . ."-,.-.. .".". .-,-.. . .'.-. .. ,.' '.' . '"" . ',.,,,,'',-

PEI /BOTOM

6.2.2 PEI COMMAND: B07"VIIO

The Bottom camnand is used to display the last six Primitives in the
current Process structure.

COMAND SYNTAX:

BOTTOM

B

FUNCTION RESULT:

The bottan of the Process structure being edited is drawn frm the END
symbol up. The END symbol is always the last position of a Process
structure.

6-17

L - -';" "'"'' -"-"-"- ''" ", '.',". , ,''. ''',-''-.''.-'.,'" ,""" : ,""- .. -"-".'",". -" . , ", ,,' " ',-' -. . ".'. ".

PEI / CHANGE

6.2.3 PEI CCMMAND: CHANGE

The CHANGE camnand is used to modify the user defined parameters of a
Primitive within the current Process structure.

COM1MAND SYNTAX:

CHANGE {position)

C

where:

[position} is a required parameter indicating the position of the
Primitive, within the Process structure, whose parameters are to be
changed.

FUNTION RESULT:

When the CHANGE command is invoked, the user is presented with a form
corresponding to the Primitive at the indicated position. The user may
change any or none of the attributes of the Primitive. If the user is in
DRAW mode and the Primitive being changed is on the screen, the Process
structure is then redisplayed with any changes made; otherwise, the screen
remains unchanged.

6-18

.

PEI / DELETE

6.2.4 PEI COMMAND: DELETE

The DELETE command allows the user to delete a single Primitive, or a
range of Primitives, from the current Processstructure.

COMMAND SYNTAX:

DELETE ffirst position},(nunber of consecutive positions)

DEL

where:

ffirst position) is a required parameter indicating the position of the
first Primitive to be deleted.

[number of consecutive positions] is an optional parameter indicating the
number of consecutive positions to be deleted, starting with the Primitive
indicated by the {first position) parameter. If this parameter is
omitted, the default condition is to delete only the Primitive at the
position indicated by the {first position) parameter.

FUNCTION RESULT:

The Primitives indicated by the ffirst position) parameter and the
optional parameter are deleted from the Process structure. The START and
the END symbols may not be deleted. Additionally, the numbers of all
Primitives being deleted must be displayed on the screen.

If the user is in DRAW mode, this simply means that the Primitives to be
deleted must be visible. If the user specifies to delete Primitives past
the end of the screen, only the Primitives on screen will be deleted.
After the delete command is issued, the remaining Primitives in the
stucture are scrolled up.

If the user is in NODRAW mode, the numbers of the primitives being deleted
must be on screen, but not necessarily the symbols themselves. For
example, say the first six Primitives are being displayed and the user
deletes Primitives three through six. Since the legend still shows three
through six, the user can delete the new third through sixth Primitives
even though the symbols on screen may not correspond to the Primitives
being deleted. The user should take care when deleting Primitives while
in NODRAW mode. If the user specifies to delete Primitives whose numbers
are past the end of the screen, only the Primitives whose numbers are on
screen will be deleted.

6-19

-.:-: .' . . .,.."... , "..""3'."" 'a ' " " "- ..""" '
"

PEI /DOWN

6.2.5 PEI CCtt AND: DOW*

The DOWJN cozmmand allows the user to "jump down" the current Process
structure an indicated nmber of positions.

CU44AND SYNTAX:

DOWN (number of positions]

D

where:

[number of positions) is an optional parameter indicating the number of
positions that the structure is to "jum~p down". If this parameter is not
used, the default condition is to drop the Process structure down six
Primitives, which is analogous to displaying the next page.

FUNCTION RESULT:

The Process structure jumps down the numiber of positions indicated by the
optional parameter, if given. Otherwise the structure jumps down six
Primitives or to the bottcm of the structure if less than six Primitives
follow the last position currently displayed.

6-20

PEI /DRAW

6.2.6 PEI COMMAND: DRAW

The DRAW ccvnan is used to put the user in the PEI DRAW mode.

COMMAND SYNTAX:

DRAW

DR

FUNC~TION RESULT:

The DRAW command sets the PEI mode to DRAW mode. This mode will remain in
effect for all future PEI sessions during the current DUI session until
changed by a NODRAW commnand.

In DRAW mode, all changes made by a user to the portion of the Process
structure currently being displayed will be reflected in the display.
i.e., if a Primitive is changed via the CHANGE cozmmand, that Primitive
will be redrawn on the screen. If Primitives on the screen are deleted,
remiaining Primitives will be scrolled up to fill the display.

If changes are made to the Process in an area which is not currently being
displayed, those changes will not be reflected in the display until the
user redraws; the area in which the changes were made. For example, if the
user places new Primitives at the bottom of the Process, and the bottom is
off the screen, the new Primitives will not be displayed until the user
explicitly displays the bottom of the Process structure.

6-21

PEI /END

6.2.7 PEI COM'MAND: END

The END ca~rand is used to terminate and exit the PEI session.

COMM AND SYNTAX:

END

E

FUNCTION RESULT:

The PEI session is ended, the graphics display is erased, and the user is

returned to the DUI Level.

6-22

PEI /HELP

6.2.8 PEI COMMAND: HELP

The HELP subcarinand displays a list of the valid PEI couiands.

COMM SYNTAX:

HELP

FUNCTION RESULT:

The list of valid canands (see PEI Ccvrxand suzrvary, figure 6-4) is

displayed.

6-23

- -. - . - , . . j . - . . J_ . . - - . . _ .. .- - - ' - ' -' . -.

PEI / HOLD

6.2.9 PEI CCMMAND: HOLD

The HOLD camand allows the user to insert any valid Primitive, which is
already a part of the current Process structure, into the menu item "HOLD"
so that it may be replicated.

COMMAND SYNTAX:

HOLD {position}

H

where:

{position} is a required parameter indicating the position of the
Primitive which is to be placed in hold for the purpose of replication.

FUNCTION RESULT:

The Primitive (camplete with the previously defined parameters) is placed
in hold. This item may then be replicated by using the PLACE command and
using HOLD as the Primitive to be placed. When a Primitive is stored in
Hold, it remains there, accessible to the user throughout the DUI session,
and thus Primitives may be moved fron one Process to another. When there
is a Primitive in hold on a terminal on which the menu can be displayed
(see MENU command), the name of the Primitive being held appears below the
menu display area preceded by an asterisk (example: *CREATE).

6-24

• " '." " ," " ." • . ..-... '.". ..-..'.,.".-."-- '..-'' .-, , ' - -,''"- . -,-. " '-,.-.-.."-.. ."-.. -".

PEI / MENU

6.2.10 PEI COMMAND: MENU

MENU is used to display the possible Primitives for a Process.

COMMAND SYNTAX:

MENU

M

FUNCTION RESULT:

The menu is a one-column list of names of the valid Primitives (see
section 3.9 for a description of the Primitives). If the menu will fit on
the screen, it is displayed to the left of the Process flowchart. If the
menu will not fit on the screen, a message will be displayed noting that
fact. The menu can be displayed on HP2647A, HP2648A, and TEK4105
terminals. Figure 6-5 shows the Process menu.

-RN N:IT'!'% 4E:E 'a EC[Vg

:TRT

' I f PLLOC

ZJTE AXOT EW WI

EEll

:ENI

TEST[T[xdInT[m~VmC TIESSJ

I ALP' .4, tl tit

I 'C + --Th +-T ,ssRGt uaGmh

Figure 6-5. Process Display with Menu

6-25

....- - .- IN. , - .

PEI / NODRAW

6.2.11 PEI COMIAND: NODRAW

The NODRAW camand is 'used to put the user in the PEI NODRAW mode.

COMMAND SYNTAX:

NODRAW

N

FUNCTION RESULT:

The NODRAW command sets the PEI mode to NODRAW mode. This mode will
remain in effect for all future PEI sessions during the current DUI
session until changed by a DRAW cammand.

In NODRAW mode, no changes which are made to Primitives in the Process are
reflected in the display until the display is explicitly redrawn by the
user. Camands which can be used to update the display are TOP, BOTTOM,
UP, DOWN and REDRAW. The user should take care when deleting Primitives
while in NODRAW mode to guard against deleting necessary Primitives since
the screen is not updated after a DELETE is performed.

6-26

PEI , PLACE

6.2.12 PEI COMMAND: PLACE

The PLACE command is used to put a Primitive at a position in a Process.
The Primitive may be placed in any position within the Process structure
except prior to the START symbol or after the END symbol.

COMMAND SYNTAX:

PLACE [Primitivel, [position]

P

where:

{Primitivel is a recuired parameter, indicating any valid Primitive or

HOLD.

[position] is an optional parameter indicating any valid position within a
Process structure, (i.e., after the START symbol and before the END
symbol). The position of a Primitive in a Process is indicated by the
numbered column to the left of the flowchart representation of a Process.
The default position is immediately prior to the END symbol.

FUNCTION RESULT:

The user is presented with a form that corresponds to the Primitive to be
placed.

When the form has been completed, the Process is redrawn if the Primitive

is placed on screen and the user is in DRAW mode. The Primitive is
placed at the position indicated by the position parameter, if given, and

all following Primitives are moved down one position. If the position

parameter is omitted, the Primitive is placed immediately prior to the END
Primitive. If the Primitive was placed off-screen or the user is in

NODRAW mode, the Process is not redrawn, and the user does not see the
placement of the Primitive.

6-27

............... ...

PEI / REDRAW

6.2.13 PEI CCMMAND: REDRAW

The REDRAW cammand is used to update the current Process display. This
command is generally used when the user is in NODRAW mode.

COMMAND SYNTAX:

REDRAW

RED

FUNCTION RESULT:

This camand causes the Process display to be redrawn from the location at
which the display was last drawn. For example, if the last time the
Process displayed was updated at the top of the Process, the display will
again be drawn fran the top of the Process. The top will be displayed
even if the user has made changes to other areas of the Process off
screen, as long as those changes were not displayed. Other portions of
the Process can be displayed using the TOP, BOTTOM, UP and DOWN commands.
The REDRAW command is especially useful when the user is deleting
Primitives in NODRAW mode so the user can see what the Process really
looks like.

6-28

". ' -.-.,, "; - _-. ' - '.' ,. '. ' ... ,-* '',",*. ,".""""" '" - " '' " ' '-"."-"' V. .-.-. ."-. ." " '-'

-~~. .- -.-- 1--.-~

PEI / TOP

6.2.14 PEI COMIMAND: TOP

The TOP cannand is used to display the first six Primitives in the current

Process structure.

COMMtAND SYNTAX:

TOP

T

FUNCTION RESULT:

The first six Primitives of the Process structure being edited (or the
entire Process if the structure consists of no more than six Primitives)
are drawn fromi the START symbol down. The START symbol is always the
first position of a Process structure.

6-29

PEI /UP

6.2.15 PEI COM1MAND: UP

The UIP coimmand allows the user to "jumip up" the current Process structure
an indicated num~ber of positions.

CCtIMAND SYNTAX:

UIP (numnber of positions]

U

where:

(numnber of positions] is an optional parameter indicating the number of
positions that the structure is to "jumnp up". If this param~eter is not
used, the default condition is to "jump up" the Process structure six
Primitives, which is analogous to displaying the previous page.

FUNCTION RESULT:

The Process structure jumps up the numnber of positions indicated by the
optional parameter, if given. Otherwise the structure jumips up six
Primitives or to the top of the structure if less than six Primitives
precede the first position currently displayed.

6-30

6.2.16 Terrninatina a PEI Session

only one Process can be created or edited during a PEI session. To create
or edit other Processes or change to another level the user must terminate
the current PEI session and return to the DUI level. This is accomplished
by giving the END command described in section 6.2.7. The current working
database is left open and control is transferred to the DUI level.

6-31

6.3 ARCHITECTURE DESIGN EDITOR (ADE)

The ADE is used to define the layout and interconnection of the physical
aspect of a data processing network. It is not necessary to develop an
architecture model if the user wishes to model operations without regard
to where these operations take place. However, if Items are routed

through a system or if Processes at one location trigger Processes in
another, then an architecture model is necessary.

The ADE allows the user to create graphically a picture of the system

architecture by positioning symbols and connections. It also allows the
user to define the legal paths of cammunication between the connections
(and along the connections).

Even if a user has defined a Legal Path Table while creating an
architecture, the system offers the option of automatically building a
Legal Path Table. The user is queried to resolve any ambiguities. The
Legal Path Table is used during the simulation to control the routing of
Items that are being passed through the system.

It is important to note that each node and link represented in the
architecture is intended to represent some system resource such as a CPU,
disk drive, tape drive, or channel. The system automatically creates
model Resources for these system Resources. The parameters of such
Resources can be altered both in the ADE--though the DEFINE comand (see
section 6.3.6)--and in the DUI -with the EDIT command (see section 6.1.4).

Hardcopies of a created architecture can be reproduced using a graphics
device (see appendix A.4).

6.3.1 Concepts for Using ADE

This section is intended to familiarize the user with the capabilities of
the ADE so that he may better understand the description of its use in
sections further below.

The view space is divided by vertical and horizontal grids. Grid lines
running vertically mark off the position and are numbered starting with
zero at the left side. Grids running horizontally mark off the Y position
and are identified with numbers, starting with zero at the bottan.
Another aid to building the architecture is variable symbol size. The
user can specify the size of symbols as he positions them in the view
space. The user is provided with cammands to change his view screen
position, to position nodes which represent system Resources, to delete
nodes, and to change symbol names and sizes. A ccimand is provided which
allows the user to specify connections between nodes. These connections
(or links) are defined as system Resources. Any two nodes may be
connected by more than one link, but there may be only one legal path
between these two nodes. (Exception: When using Method A, B, or C
algorithms to define the Legal Path Table, two node types "TTY" and "LoOD"
are considered "leaf-nodes" and should have only one connection to one
other node. The architecture developed using the ADE becames the basis

6-32

" "'-'-:':-",,ii%-: - i,;....-.,.. a " "" ":-"""-"""

for generating the Legal Path Table which is used to route Items through a
system.

The view screen on the HP-2647A terminal, for example, is approximately
five inches high by eight and one-half inches wide. This workspace is too
small for some systems. The ADE, therefore, gives the user a Wrkspace
which is thirteen and two-tenths inches high by 20 inches wide and allows
the user to move the viewspace anywhere in this workspace to construct the
architecture. The contrast between viewspace and workspace is illustrated
in figure 6-6. The workspace is the same size on all terminals supported
by AISIM.

Figure 6-6. Viewspace versus Workspace in ADE

6-33

"'-/-i .". "."-."-"-."..-/'.'".'" "-'"-"'.".'".'." ". .'" """ .'"...."..."."............".-..-".".".".'..."-.....-.,..v.."-."...............-".-.....'

6.3.2 Use of the ADE

The ADE can only be accessed from the DUI level. The ADE level is entered
by issuing the following cammand:

ARCH

A

Only one architecture is allowed per design database. This prevents the
user from specifying an architecture structure that does not relate to the
Processes and Resources that have been defined. Experiments using common
Processes, Resources, etc. with different architectures can be run by
following the procedure listed below:

1) While in the VAX/VMS ready level or ATSIM READY level, COPY the
project.DBF data file to newproject.DBF data file where: project
and newproject are names of PROJBCT databases for AISIM models.

2) Enter the ADE to edit the architecture contained in
newproj ect. DBF.

3) Simulations can now be run using the newproject database.

If there is no architecture defined in the design database, the system
will provide a blank grid on the screen and a pound sign (#) prompt for
the user to enter cammands. If an architecture has already been defined,
then the old architecture will be displayed and the user will be provided
a pound sign (#) prompt for entering comands.

The ADE has DRAW and NODRAW modes which are similar to the PEI DRAW and
NODRAW modes. However, if a user is logged on to a VTI00 terminal, only
NODRAW is available. In NODRAW mode, the user can place and change
symbols, connect nodes, and perform all of the functions of the ADE,
except that the results of the commands will not be reflected in the
screen until the user explicitly redraws the screen with a REDRAW or
WINDOW cornand. If the user is in DRAW mode on a supported terminal, the
results of all ADE commands will be reflected in the display. The VT100
is always in NODRAW mode. The default for the other terminals is DRAW
mode.

The following pages give a summary of commands available in the ADE and
their use. These commands are legal in the ADE level only.

6-34

/-.. .;-. • .-.,.. .• •....,, ,.. ,. ... *- -.- ,- ,- .. .-.,. - - ,

-- ."• . 'Z=- .' a I I i li i ii i ~ --.....

CHANGE NAME, {narne}, new-nane}
TYPE, {namef,{typel
SIZE, [namfel , sizel

CHG

CONNECT {nodel1,{ncde2),f{link).[F}
CON

DEFINE { symbol- typelI, [Resource-name]

D PATH,{nodell,{node2l,{Linkl},...,{Linkn)

DELETE inarel,..., [name-n]
DEL

DRAW
DR

END

LIST PATH, (nodell , node2}
LPT

L

MOVE [nodel , x-position} , y-positionl
M

NODRAW
N

PLACE {symbol-typel,{nodel,{x-positionl,{y-position},[size]
P

RECON (link)
R

REDRAW
RED

SAVE

WINDOW {directionl}, [n], [direction2], [nI
W

Figure 6-7. ADE Camand SumIary

6-35

ADE SYMBOLS

6.3.3 ADE Symbols

Symbols used to construct an architecture are generic in nature. The
shape associated with same symbols is representative of a computer
system's hardware elements although no implicit attributes of computer
hardware elements are given to the symbols. Attributes defined for a
symbol which make it represent an actual physical device must be defined
by the user. Attributes are attached to symbols by the DEFINE command.

Symbols in an architecture correspond directly with Resources. This
relationship applies to nodes and links. All symbols which are directly
connected correspond to an entry in the Legal Path Table.

One other implied relationship applies to the symbols in an architecture.
The symbols TrY and LOD are considered to be "terminal" symbols by the
Legal Path Table. Therefore, these tun symbols have a constraint that
they can be connected with only one link to one of the other symbol types.
Also, TTY and LOD symbols cannot be directly connected. These constraints
are enforced by the LPT generation not the ADE.

The cmplete symbol set for AISIM architecture is shown in figure 6-8.

ei

0 1 2 3 4 4 S S 6 8 8 9 9 40 s 0 a 5 8 S 0 o I o I o 9 o # S 6

Figure 6-8. Architecture Symbols

6-36

25i

"-".. ..'- .- " '. .i .. -. - . . . _ , . . .' -"-: -', '' , . -." - ""- . "' _, ,.n ."' """ 'a,,. " " '"'" "" "-"-- """ - -" " "" -. .." -"'"""" .. -. ."".-. .".. .-
5

ADE / CHANGE

6.3.4 ADE COM4AND: CHANGE

The CHANGE command allows the user to modify the name, type, or size of an
ADE symbol which represents an architecture node.

CCMMAND SYNTAX:

CHANGE NAME, {name}, {new-name}

CHANGE TYPE,{name},{type}

CHANGE SIZE, {name}, {size}

CHG

where:

{name} is a required parameter indicating the name of the symbol which is
to be changed. For the commands CHANGE TYPE and CHANGE SIZE, name must
designate a node.

{new-name} is a required parameter specifying a new name for the current
named symbol where new name should be 1-8 alphanumeric characters.

{type) is a parameter specifying that the named symbol is to be changed
from its current type to "type" which is one of the legal symbol types.
The symbol types are shown in figure 6-8.

{size) is a required parameter specifying that the named symbol is to be

changed from its current size to "size" where size can be 1-20.

FUNCTION RESULT:

The indicated changes are made to the symbol "name". When the user
changes a symbol type or size, there is no impact on the other parameters.
When the name is changed, the default size is the number of characters in
the name. If the user is in DRAW mode, the symbol is redrawn to reflect
the changes.

6-37

ADE / CONNECT

6.3.5 ADE COMMt1AND: CONNECT

The CONNECT cammand is used to show connections between architecture nodes
by placing links between them.

COMMAND SYNTAX:

CONNECT {nodel},fnode2},{link}.(F]

CON

where:

{nodel} is a required parameter indicating the first symbol of a from-to
pair of symbols to be connected and where nodel is 1 to 8 alphanumeric
characters.

{node2} is a required parameter indicating the second symbol of a frcm-to
pair of symbols which are to be connected and where node2 is 1 to 8
alphantneric characters.

{link} is a required parameter indicating the name of the connection which
is to be made and where link is 1 to 8 alphanumeric characters.

[.F] is an optional parameter appended directly to link indicating that
the camunication link between nodes nodel and node2 is full-duplex. The
name of the link must be no longer than eight characters including the
".F" The effect of this is to create two links, a "link.A" and a
"link.B". Links defined without this parameter bear a half-duplex
default.

FUNCTION RESULT:

If nodel is not in the viewspace when the camand is issued, the user will
be prompted with the message,

THE FROM NODE MUST BE ON THE SCREEN TO ESTABLISH CONNECT: COMMAND ABORTED:

If nodel is on the viewspace and the user is on a terminal other than a
VTI00, a cursor (+) is turned on. If the user is on an HP terminal, the
cursor appears at nodel. If the user is on a TEK4105 terminal, the cursor
appears where it was last positioned, or at the lower left corner if it
was never moved. At this point, the user has two alternatives:

1) he may cause the system to connect the two symbols with a
straight line through their centers by depressing any non-period,
alphanumeric character or,

2) he may cause the system to produce a shaped line segment fran
symbol 1 to symbol 2 by:

6-38

K :===================.,.. ,. "-- , .,, - - - , , ,m -,. .==.== ====.= =.======== ":':': : - " :'" :". ..::: i , :::::::::::, ..:::::::::::::::::::::::::::::::::::::," "::

a) moving the cursor using the graphics controls, to a position

where he wishes to bend the line,

b) typing a period (.),

c) repeating a) and b) until a maximum of five corners have been
created.

d) completing the line segment from the last corner to symbol 2
by entering a non-period alphanumeric character.

Alternative 2 allows the user to place symbols randomly and later show
connections that would be obscured or confusing if generated by
Alternative 1. Connections can be straightened or have corners added to
them with the RECON camand (see section 6.3.14).

If the user is on a VTIOO terminal, the two nodes are automatically
connected by a straight line. Bent line connections are not possible.

If the user is in NODRAW mode on a terminal other than a Vrl00, the
connect command operates as stated above for DRAW mode except that the
line or line segments are not reflected on the screen. Thus the user can
still make connections while in NODRAW mode.

After a connection is defined, two entries are entered in the Legal Path
Table. The first is an entry for the path from nodel to node2 via link,
and the second entry specifies a path from node2 to nodel via link. If
link is defined as full-duplex, then the path from nodel to node2 uses
"link.A", while the path from node2 to nodel uses "link.B". (See section
on "Define" comand). Nodel is then established as the link's from node
and node2 is established as the link's to node. All subsequent paths
using this full-duplex link will use "link.A" if they go in the direction
of the from node to the to node and will will use "link.B" if they go in
the opposite direction.

6-39

A "

I.

ADE / DEFINE

6.3.6 ADE COMMAND: DEFINE

The DEFINE command serves two functions. It is used to define attributes
to be associated with symbols (this allows the user to make the logical
assignment of physical device characteristics to the Resource). DEFINE is
also used to indicate the legal path between nodes in the architecture.

COMMAND SYNTAX:

DEFINE {symbol-type}, [Resource-name]

DEFINE PATH, {nodell, fnode2}, {linkl},..., {linkn}

DEF PATH

where:

{symbol-type} is the symbol type (sqr,dia,lod,tty,etc.) for which the user
wishes to define attributes. Figure 6-8 shows these symbols.

[Resource-name] is an optional parameter that specifies the name of an
existing Resource frcm which the symbol-type attributes are to be copied.

{nodell is the name of the node from which the path is t6 run.

{node2} is the name of the node to which the path is to run.

{linkl},...,{linkn} are the names of the links along which the legal path
between nodel and node2 is to run.

FUNCTION RESULT:

If the DEFINE command is issued with the format

DEFINE {symbol-type}

a form will be displayed that shows the parameters currently assigned to
this symbol type. The form has the same format as the Resource form in
figure 3-6. The user may modify these parameters as desired. After
symbol attributes have been defined, any further Resources autamatically
created in association with the symbol will be given the attributes that
were defined for that symbol type.

If the syntax of the ccrmand is:

DEFINE {symbol-type}, [Resource-name]

the system will present the user with a form to be filled with the
attributes of the named Resource. The user can check the data and/or
modify it. when entered, the data last displayed in the form will be used
to create the attributes of the symbol type.

6-40

If the syntax of the command is,

DEFINE PATH {nodell,{node2l,{linkll,...,{linkn}

DEF P

entries in the Legal Path Table will be made. These entries can be
inspected with the LIST cammand (see section 6.3.10).

There are several rules constraining the creation of a legal path in ADE.

First, a point-to-point path is a path between two nodes that are
separated from one another by a single link, i.e., there is no other
node between then.

Secondly, a sub-path of a given path is any one of the segments of
the path that go to the same node as the path but fran any one of the
nodes the original path passes through. For example, a defined
legal path from nodel to node2 to node3 to node4 will have the
following sub-paths: (1) from node2 through node3 to node4 and (2)
the point-to-point path from node3 to node4. The path from nodel to
node3 through node2 is not a sub-path of the original path because it
does not go to the same node as the original.

With these two definitions, we can state four quite general rules
governing the definition and deletion of legal paths. They are:

1) A Legal Path between two nodes is a collection of Legal Path

Table entries of the fon:

FROM TO NEXT LINK

which indicates that the path fram node FROM to node TO goes to node NEXT
via link LINK.

2) There may be only one Legal Path between any two nodes.

3) There must be a path between any two nodes that are directly
connected.

4) Use of the two links implied by a full-duplex name for a
connection follows these rules:

a) Wen a connection Con.F is established (actually Con.A and
Con.B) with the command,

CONNECT N)DE1,NODE2,CON.F

Nodel is established as the fran node for that connection and
Node2 is established as the to node.

b) Any path which uses the connection CON.F in the direction
from its from node to its to node will use CON.A.

6-41

.- ,- - . -.' -. , ".. -.. .-.- -. .- . -.- -. ..- v . . ' . . . -, - .-. -- , -. -.. , . .. *. . -. --- .. , . -. . .. ,

c) Any path which uses the linfk COU.F in the direction
from its to node to its fran node will use CON.B

d) Establishing the connection between two nodes implicitly
defines a point-to-point path between them.

These four rules have a nu.mber of restrictions of which the user should be
aware:

1) Defining a path from one node to another implies defining paths
fran all nodes along the path to the last node in the path.

2) Changing a path (redefining, deleting) changes any other paths
that use it as a sub-path.

3) A point-to-point path cannot be deleted.

4) When a path between two directly connected Nodes is deleted, a
point-to-point path is automatically restored.

5) Deleting a node or link from an architecture removes any paths
which use the deleted entity.

6) Changing the name of a node or link changes the name of the
entities in the Legal Path Table as well.

7) Cyclic paths are not allowed.

6-42

ADE ,, DELETE

6.3.7 ADE CCMMAND: DELETE

The DELETE camand allows the user to delete nodes or links in the
architecture or parts (or all) of the previously defined Legal Path TableILP.

COMMAND SYNTAX:

DELETE {namel},..., [name-n)

PATH {nodel},{node2}

DEL

where:

{namel} is a required parameter that specifies the node or link to be
deleted.

{name-ni is an optional parameter which specifies an additional node or
link to be deleted.

{nodel} and {node2} are required parameters indicating the nodes between
which the legal path is to be deleted.

* indicates the entire architecture is to be deleted.

FUNCTION RESULT:

If the user is in DRAW mode, the following results are seen. When a
symbol is being deleted, the symbol and all connections to it are erased
from the screen and removed from the database. If a connection is being
deleted, the connection is erased from the screen and is removed fran the
database.

If the user is NODRAW mode, the affected entries are deleted frm the
database and the screen remains unchanged. When a path between nodel and
node2 is deleted from the Legal Path Table, only that path is deleted; any
sub-paths which are in this path are unaffected.

6-43

,. ,. .::-,.. ,,:. ...,.-. ...,/ :,..-:.<. .. -.-.. ,... -..,- ., ,-., ,,- .- . . ,.,- ,- v .

ADE /DRAW

6.3.8 ADE COMMAND: DRAW

The DRAW carmand is used to put the user in the ADE DRAW mode.

COMMAND SYNTAX:

DRAW

DR

FUNCTION RESULT:

The DRAW cammand sets the ADE mode to DRAW mode. This mode will remain in
effect for all future ADE sessions during the current DUI session until
changed by a NODRAW command. The DRAW cammand is not available on a VTI00
terminal.

In DRAW mode, all changes made by a user to the architecture which affect
the architecture display are immediately reflected in the display. I.e.,
all nodes and connections are drawn on the screen as they are added to the
architecture, and deleted nodes and connections are erased fram the
architecture.

6-44

• o" -, . . *.

ADE END

6.3.9 ADE CCMMAND: END

The END comand is used to terminate the ADE session.

COMMAND SYNTAX:

END

FUNCTION RESULT:

The END command terminates the edit mode of the ADE session and
automatically triggers the generation of a Legal Path Table (LPT). The
user will be questioned as to the method of generation for the LPT and for
information necessary to clear up ambiguities in its generation before
control is returned to the DUI level. The LPT is described in section
6.3.18.

If the user does not wish to generate an LPT, another END command will
return control to the DUI level.

6-45

ADE / LIST

6.3.10 ADE CCttAND: LIST

The LIST command enables the user to list the legal paths that have been
defined in the architecture.

CCMMAND SYNTAX:

LIST PATH, [nodel}, fnode2}

LPT

where:

{nodel} is the name of the node at which the path to be listed begins.

{node2} is the name of the node at which the path is to end.

FUNCTIONAL RESULT:

If the cammand syntax is LIST PATH, a format like that below is displayed:

FRCM: node3 TO: node2 PATH:

linkl,link2,...,linkn

If the cammand syntax is LIST LPT, the entire Legal Path Table is
displayed.

6-46

- °-.
.,.|, n m lm nI' "

-
"....

:
' - ' " " " " "

" -
" " " " :' "

"
:'

ADE / MOVE

6.3.11 ADE COMMAND: MOVE

The MOVE cammand allows the user to change the location of a node in the
architecture.

COMMAND SYNTAX:

MOVE {node}, fx-position}, {y-position}

M

where:

fnode} is the name of the node to be moved.

{x-position} is the x-coordinate of the new position, i.e., the position
to which the node is to be moved.

{y-position} is the y-coordinate of the new position, i.e., the position
to which it is to be moved.

FUNCTION RESULT:

If the user is in DRAW mode, the node and all links to or from it will
first disappear fran the screen. The node will then be redrawn at the new
position and the previously defined connections with other nodes will
reappear.

If the user is in NODRAW mode, the coordinates of the node will be changed
in the database, and the screen will remain unchanged.

6-47

. . -_ . .., . , .A.. . ..
,_, ...,,... .. ._., ; i',".-? ?."L --',.?. i.i,-iq.-.-2 ",."-" ,:'.',- .-?." "7 .',-.-?-".-. .'.'..-... . .. "-..-,..

ADE / NODRAW

6.3.12 ADE COMiMAND: NODRAW

The NODRAW comnand is used to put the user in the ADE NODRAW mode.

COMMAND SYNTAX:

NODRAW

N

FUNCTION RESULT:

The NODRAW carmnand sets the ADE mode to NODRAW mode. This mode will
remain in effect for all future ADE sessions during the current DUI
session until changed by a DRAW cammand (section 6.3.8).

In NODRAW mode, no changes which are made to the architecture are
reflected in the display until the display is explicitly redrawn by the
user. For example, when nodes are placed in the architecture or deleted
from the architecture, the changes are made to the catabase, but the
screen remains unchanged. Camands which can be used to update the
display are REDRAW (section 6.3.15) and WINDOW (section 6.3.17) cmnands.

All ADE ccimmands are available while in NODRAW mode, except that on a
VT100 terminal, connections can only be straight lines - bent line
connections are not allowed. Connections on the VT100 are drawn
automatically when the CONNECT (section 6.3.5) and RBCON (section 6.3.14)
ccmmands are issued.

6-48

, . , .°o. °-. -'.-4"
.

o,'. "-, .°.
.. oo° .o . ° l
°
• • 4 o . o %. .,-.. "-. . %.. .. '...°" ° . . - . - "-.,.- - .

ADE / PLACE

6.3.13 ADE CCMMAND: PLACE

.The PLACE command allows the user to position a legal ADE symbol in the
view space at specified coordinates.

CCMMAND SYNTAX:

PLACE {type1,fnode},{x-position},{y-position,[sizeI

P

where:

{type} is a required parameter which specifies one of the legal ADE symbol
types. The legal symbol types are shown in figure 6-8.

{node} is a required parameter that indicates the name that is to be
displayed and associated with this placement of a symbol and where name is
1 to 8 alphanumeric characters.

fx-position} is a required parameter that specifies the horizontal
position of the symbol relative to vertical grid number position 0. The
x-position must be within the limits of the view screen.

ty-position} is a required parameter that specifies the vertical position
of the symbol relative to horizontal grid position 0. The y-position must
be within the limits of the view screen.

[size] is an optional parameter specifying the size of the symbol to be
placed. The default size is the number of characters in name. Legal
sizes are 1-20.

FUNCTION RESULT:

If the user is in DRAW mode, a symbol of the specified type appears on the
view screen at the x, y positions indicated in the cammand. The symbol
name appears within the symbol and the symbol size is regulated by the
size parameter.

If the user is in NODRAW mode, the symbol is added to the database, and
the screen remains unchanged.

6-49

•

ADE / RECON

6.3.14 ADE COMMAND: RECON

The RECON cnmmand allows the user to alter the shape of a given link,
giving it corners, decreasing the number of corners it has, or adding to
the number of corners it has.

COMMAND SYNTAX:

RECON (linki
R

where:

[link} is the name of the link to be redrawn.

FUNCTION RESULT:

If the user is in DRAW mode, the link will disappear, but the cursor (+)
will be turned on. The cursor is positioned at the fran node on an HP
terminal, or at its last location on a TEK4105 terminal (see CONNECT
ccmand). As with the CONNECT ccmand (section 6.3.5), the user has two
alternatives:

1) cause the system to connect the two symbols with a straight line
through their centers by typing any non-period alphanumeric
character

2) cause the system to produce a shaped line segment from symbol 1
to symbol 2 by:

a) moving the cursor using the graphics controls, to a position
where he wishes to bend the line,

b) typing a period (.),

c) repeating (a) and (b) until a maximun of five corners have
been created.

d) campleting the line segment from the last corner to symbol 2
by entering any non-period alphanumeric character.

If the user is on a VTI00 terminal, a straight line connection is
automatically created between the two nodes and stored in the database,
but the screen remains unchanged.

If the user is in NODRAW mode on another terminal, the two options given
above are still available. The only difference is that the connection
lines are not displayed on the screen as the connection is defined.

6-50

ADE / REDRAW

6.3.15 ADE COM1MAND: REDRAW

The REDRAW cammand causes the current architecture window to be redrawn to
reflect any changes which have been made in NODRAW mode.

CCMMAND SYNTAX:

REDRAW

RED

FUNCTION RESULT:

The display is redrawn to reflect the current architecture including all
changes made by the user while in NODRAW mode.

6-51

ADE / SAVE

6.3.16 ADE COMMAND: SAVE

The SAVE command copies the contents of the working database into the
user's permanent database.

COMMAND SYNTAX:

SAVE

FUNCTION RESULT:

The permanent database is replaced with the contents of the working
database, and the user is returned to the ADE ready state - # prompt.
This cammand is useful when the user is defining a large system because it
allows the user to protect the work done up to the point of issuing the
SAVE camand.

6-52

ADE / WINDOW

6.3.17 ADE COMAND: WINDOW

The WINDOW command allow the user to move the view screen to any position
within the legal view space.

COMMAND SYNTAX:

WINDOW fdirectionl}, [n],direction2],[n]

W

where:

{directionl} is a required parameter that specifies the direction to move
the view screen. Legal directions are:

U = up
D = down

L = left
R = right

[direction 2] is an optional parameter that specifies the direction to

move the view screen. Legal directions are:

U =up
D = down
L = left
R = right

[n] is an optional parameter that specifies how many grid positions the
view screen is to be moved from its present position. If "n" is not
given, a default of half the screen width or height is assumed.

FUNTION RESULT:

After the command has been issued, the screen is cleared, new coordinates
are calculated, and the screen is redrawn as seen from the new position.
View screen coordinates do not change; only view space coordinates. If

the value of "n" is too large causing the view screen to go beyond the
limits of the view space, the value of "n" will be truncated to prevent
the system from exceeding the view space bounds.

When the ADE is first entered, the view screen is positioned at the upper
left corner of the view space.

6-53

...... .' "...

6.3.18 Termination of an ADE Session

The ADE session is terminated by issuing the command,

END

This completes the edit portion of the ADE session and begins a sequence
of events that leads to a return to the DUI Level. Before control is
returned to the DUI level, however, the system gives the user the option
of creating a new Legal Path Table. The Legal Path Table (LPT) created by
the system is based upon the architecture that was created. The LPT
consists of a two dimensional array. Entries in the array represent a
means of getting from one node to another.

Entries contain two pieces of information:

1) the next node in the path from Node 1 to Node 2
2) the link used to get to the next node.

There are three basic methods of generating a Legal Path Table at the end
of an ADE session. In response to the END command, the system questions
the user:

BY WHICH METHOD DO YOU WISH TO GENERATE THE LPT (A, B, OR C)?

IF YOU HAVE AN ESTABLISHED LPT OR IF YOU WISH TO SKIP THIS STEP,
TYPE "END"t

IF YOU DESIRE MORE INFORMATION ON METHODS A, B, OR C, TYPE '-INFO"

After the pound sign (#) promnpt, the user may enter either "A", "B"t, "ic"t,
"END", "HELP", or "INFO". If the user enters END and a carriage return
after this or any subsequent # prompts without responding to the previous
promnpt question, any currently defined LPT, including none, will remain in
effect, and control will return to the DUI level.

If any of the three options is chosen the, previously defined LPT will be
deleted from the database and a new LPT will be produced. Since these
algorithmns may take several minutes, the user is provided with a message
that lets him know the system is progressing with the LPT. The prompt
initially reads "Generating LPr 1". After so many routes have been found,
the message will change to "Generating LPT! 2"1 and so on. The following
paragraphs discuss the individual processing performed in response to
methods A, B, and C.

METHOD A - Method A directly connects adjacent nodes in the architecture
but no other paths are generated. This method is used when message
routing paths are not of interest in the model. This method requires the
least processing time to generate the LPT. After the user selects method
A, the system will begin generation of the LPT. In general, AISIM will
not solicit any further information if this method is used.

6-54

Method A detects two types of error. If the generator detects an

unconnected node, the system will output the following error message:

UNREACHABLE NODE..."node name"

and control is-transferred to the DUI level. If multiple links connect
nodes, the system will prompt the user for resolution of ambiguous paths.
The system will prompt with:

GOING FROM "Node namel" TO "Node name2" CAN GO

1. Through "next Node name" BY CHANNEL "channel name"
2. Through "next Node name" BY CHANNEL "channel name"

ENTER THE NUMBER OF THE ROUTE YOU WANT TO USE #

All "Through" options will be listed. The choice of path is selected by
entering the number of the path after the pound sign (W prompt. If there
are ambiguous paths for other node pairs, the user will be prompted for
resolution. If the user should ABORT the LPT generation the following
prcmpt will be displayed:

UNABLE TO SAVE LPT

Control is then passed to the DUI level. If all ambiguities are
clarified, the system will complete the generation of the LPT, and issue
the following message:

SAVE OF LPT COMPLETE

The user is then at the DUI level.

METHOD B - Method B should be used when there is extensive routing through
the architecture. Using Method B, AISIM will algorithmically find all
possible legal paths through the system.

This can involve a lot of processing in fully connected architectures
because a path from every node to every other node must be defined. For
example, if there are 20 nodes then there will be 380 paths, 20 times 19.

The AISIM responses for method B are similar to those described in method
A. Because AISIM will fully connect all nodes in the architecture there
are bound to be many ambiguous paths. The user will be prompted to
resolve all ambiguous paths.

METHOD C - Method C should be used when there is extensive routing through
the architecture, also. Using Method C, AISIM will algorithinically find
all possible legal paths through the system but will assume that the path
for directly connected nodes in the architecture is the direct link. This
can substantially decrease the number of paths the user must resolve.

The AISIM responses for method C are similar to those described in method
A.

The HELP request causes the system to show the available ccmmands.

6-55

' " " • '. ., ".". "- -"'" '"'" ." -" -. "'-" -". -'- ."." -' . -"."." ".",, -.-""- '-.''.-' .''- " '..... .. ,. .-. ".-. ." .,';. m ,an, ,,. .."". .".'- " ' ' " ' "" " ."."

.~ , ~ ~ rrr r'4 T- -r -.

The INFO request prints the following:

ME-HOD A defines as legal paths only connections directly between adjacent
Nodes. Longer paths must be handled explicitly in the user Processes.

METHOD B generates all possible paths between each Node pair. You must
identify default legal paths for each Node pair.

METHOD C generates all possible paths between each Node except for
directly connected Nodes. In the case of adjacent Nodes, the direct
connection is assumied3 as the legal path.

Type END and a carriage return to exit the LPT generation.

In figure 6-9, an AISIM architecture is shown. This architecture connects
nine nodes together with 10 links. Using method A, the user is required
to resolve 2 ambiguities. Using method B, the user is required to
resolve 20 am~biguities. Using method C, the user is required to resolve
12 ambiguities. The Legal Path Tables using each of these methods is
shown in figures 6-10 through 6-12.

6-56

44 4W LEFT :

4,

LK

I @1 1 223344S 6 i 7 7 9 89

9 s Is a5 15450 545 16 s 5 IsI

Figure 6-9. Sample Architecture

FROM TO NEXT VIA
NODE NODE NODE LINK
2=3MU22 ==u======= =z=== 32233z

A C C C1
a C C C2
C A A C1
C a a C2
C D D C3
D C C C4
D E E Ce
0 F F Cs
E 0 D Ca
E G G Ce
F D 0 Cs
F G G C?
G E E Cs
G F F C7
G H H C9
G I cis
M G G C9
I G G cis

Figure 6-10. Sample LPT Generated by Method A

6-57

VIA
NOO NCOE 4OOE LINK

A B C1
A C Cl
A C C1
A E C C1

A 9 c CI

A G C C1

A H C CI

A C Cl

a A C C2

a C C C2

a 0 C C2

8 E c C2

a F C C2

a G C C2

a H C C2
a . C C2

C A A CI

C a a C2

C 0 D C3

C E 0 C3

C F D C3

C G 0 C3

C D D C3

C D 0 C3

O A C CA

o B C CA

o C C CA

o E E CS

O F F C5

0 G E CS

O E CS
D I E Cs

E A D C8

E B D Cs
E C D CS

E 0 D CS

E F G CS

E a G CS
E H G CS
E I G CS
F A D CS

F B D C5
F C D CS
F D D CS
F E G C7

F G G C7

F H G C7

F I G C7

G A E CS

G 8 E CS

G C E Ce

G D E CS

G E E CS
G F F C?
G H H C9

G I I ClI
H A G C9
H a G C9

H C G C9
N 0 G C9
H E G C9
H F G C9

SG G C9

I G C9
I A G Cie
I BG ClO
I C G Cie
I G C C1O
I E G CIO
I F G ClI
I CG Clie
I H G C1i

Figure 6-11. Sample LPTI Generated by Method B

6-58

• . . - ,. .* .* ..' .- * *. *- *•. - .. - . .- - " - -...- ,, .-..-..-.. . -... . -.- ." .. . " . " ."....' . %

=RO 70 EX VTANCODE '4ODE NCCE L!W

A ClA C Cl
A C.

E C:
A F Cl
A G C Ci
A H C Ci
A I C Cl
B A C C2
B C C C2
a D C C2
a E C C2
a F C C2
a G C C2
8 H C C2
a I C C2
C A A C1
C a B C2
C 0 D C3
C E 0 C3
C F 0 C3
C G D C3
C H D C3
c I D C3D A C C4
O B C C4
o C C C4
D E E C8
O F F Cs
D G E Ce
D H E C8
D I E C8
E A D CS
E 8 D Ca
E C D Cs
E D D C8
E F G C8
E a G Cs
E H G CS
E I G CS
F A D CS
F 8 D CS
F C D CS
F D D CS
F E G C7
F G G C7
F H G C7
F I G C7
G A E ce
G a E Cs
G C E CS
G D E Ce
G E E CS
G F F C7

GH H C9
G I Cie
H A G C9H 9 G C9
H C G C9
H D G C9
H E G C9
M F G C9
M G G C9
H I G C9

A A G Cie
a G Cli

I C G Cie
D G Cie

I E G Clie
I F G Cie

I H G Cli

Figure 6-12. Sample LPT Generated by Method C

6-59

+ - '-," , -,:,, ,.. --" " ,; - d - 'm'.. , 2. ***" " ' . " "N* ".*'% ... , "*.. . - '..- '

SECTION 7

ANALYSIS USER INTERFACE (AUI)

After completing a model design using the DUT, the model can be exercised
using the comands available in the AUI. During simulation, statistics
are kept on Variable values, Item throughput, Resource utilization,
queueing delays, Queue lengths, Action times, Process execution, and
Process timing. A set of output reports organizes these statistics for
printing off line or viewing on-line (while in the AISIM READY level)
after completion of the simulation run. Plots of selected model
parameters, however, may be drawn on the screen when simulation is halted
at a breakpoint, end of period, or end of simulation.

The command issued to enter the AUI from the AISIM READY level contains an
optional parameter NOXLATE. If this parameter is aitted, the project
database is first translated before a simulation is performed. This
translation converts the database into the format required for simulation
execution.

If the NOXLATE parameter is used, no translation will take place. The
last translation of the project database is used in executing a simulation
run. Since another translation is required only if the database was
changed (in the DUi) since the last translation, it is not always
necessary to repeat the translation process at the start of an analysis
session. The NOXLATE option permits skipping of the translation step.

In the translating process, the user is asked the following question, if

there is more than one Scenario in the project database:

WHICH SCENARIO DO YOU WISH TO TRANSLATE?

The user must respond with a valid Scenario name, one that has been
defined previously in DUI level. A carriage return in response to this
question will cause AISIM to list available Scenarios.

If the Scenario name given is invalid the system will respond:

INVALID SCENARIO NAME - REENTER

The user should then enter the correct Scenario name.

When translation of the model and Scenario has completed, the simulator
reads the translated database and checks for errors. If the simulator

detects one or more errors, the message

ERRORS DETECTED IN MODEL TRANSLATION

7-1

;-" .'..'i-.i.;,'. '.i--'.-;'.-;-'?--;.-.'. -.-i'..'..,-.-, .'->..."...-.--.."..'.".-'-,".-"..-.. --'... --"..

| I- . - ------- - - . .-

is displayed, the AUI level is exited and the user is returned to the
AISIM READY level.

At this point the user should enter the EDIT comand (described in section
7.4). This automatically invokes the EDT line editor on the project
report file. The user should use the Find command of the VAX/VMS EDT
editor to list all occurrences of "####". This will result in a list of
all errors detected during initialization. Each error documents a problem
detected in the model. The EDT line commands used to view the report file
are discussed in section 11.3.

If no errors are detected, the following message is displayed:

NO ERRORS DETEXCTED IN MODEL TRANSLATION
YOU MAY NOW ENTER COfMANDS

The system provides a # prompt and is ready to accept any of the valid AUI
commands. These commands are described in the following pages.

During each of the three phases of analysis - 1) pre-simulation (before
the first GO cofmand is issued), 2) mid-simulation (after the first GO
command is issued but before simulation termination), and 3)
post-simulation (after simulation termination), the user can invoke
different commands.

PRE-SIMULATION COMANDS:

CANBREAK DEFPLOT EDIT END GET GO

INFRES LIST LISTVAL

SAVE (plot definitions) SETBREAK DELETE

MID-SIMULATION COMMANDS:

CANBREAK EDIT END GO LIST LISTVAL

PLOT SAVE SETBREAK

POST-SIMULATION COMMANDS:

END LIST LISTVAL PLOT SAVE

The simulation is started with the GO command.

The SETBREAK and CANBREAK cammands are used to establish and cancel
stopping conditions (or breakpoints) for the simulation. EDIT is used to
make temporary changes to Constants, Variables, and the random number seed
values (the keyword is STREAM) upon which stochastic timing and
probabilistic branching are based. The Scenario and Loads may be modified
by changing the values of parameters specified by Constants. A limited
number of Resources in the model sometimes causes a bottleneck which is

7-2

evidenced by a waiting line or queue. The effects of this queueing may be
eliminated by changing the available Resources to an unlimited quantity.
The INFRES command is used to do this on a temporary basis. [LIST and
LISTVAL are used to display model entities, their attributes, and their
values. LISTVAL also allows the user to examine the current random number
seeds. The EID command returns control to the AISIM READY level.

The DEFPLOT and PLOT commnds are used to specify what information is to
be gathered for graphs and to request the graph to be displayed at the
terminal, respectively. The DEFPLOT coand can only be used prior to the
start of simulation since the simulator must know what statistics to
sample.

Simulation may be performed in periods and is suspended at the end of the
number of periods specified. The numiber of periods to be simulated is
specified as an optional period of the GO commnand. The user is prompted
at the end of the period with the message:

END OF PERIOD
YOU MAY NOW ENTER COM4MANDS

and with an audible 'beep' at the terminal.

The user can now make changes in the values of Variables, set breakpoints,
display plots, or cancel breakpoints. By.suspending the simulation at the
end of a period, the user can dynamically interface with the model.

A similar result occurs at a user specified breakpoint, except that the
message reads:

BREAK POINT REACHED:
(description of the condition of the breakpoint)

YOU MAY NOW ENTER COM4MANDS

An audible 'beep' is also sounded at this point.

The AUI level commands are described in detail on the following pages.

7-3

................................-. e

(CAN) STETS ARE-

F()

EDIT (E)SM DJTIT-

GOS () UTION SPE

Fiqure 71. AnalyiS User ISterAe rnad

HEP -4v

.T O

. ~ ~ ~ ~ ~ ~ I

CANBREAK
CAN

DEFPLOT fentity-typel ,{entity-ncanej,..., [entity-name)

DELETE TITLE,{t-itlenumil}.... [titlenuni
DELETE TITLE,*
DEL

EDIT {entity-typel ,tentity-nanel , new-valueI
E

END

GET DEF, (setnanel

GO [n]
G

HELP

INFRES {enti ty-narne},..., [entity-name]

LIST fenti ty-type/DEF/PLOT/TITLEI
L

LISTVAL {entity-type},fentity-name}

LV

PLOTr

SAVE {settype}, {setnanej,[descr]

SETBREAK fentity-typel, {entity-nane} , rel-oper , {value}

SET

Figure 7-2. AUI Commuand Summary

7-5

AUI / CANBREAK

7.1 AUI C M D: CANBREAK

The CANBREAK command allows the user to cancel a previously defined
breakpoint. See the SETBREAK comand in section 7.14.

COMAND SYNTAX:

CANBREAK

CAN

FUNCTION RESULTS:

A previously defined breakpoint is canceled.

7-6

4 .-. -. . - ..- . .- .- N ., b , . .. i , : -; - : -: - : : :: : : :: : : : : :: :: ::: : :: :: : : i !

AUI / DEFPLOT

7.2 AUI COMMAND: DEFPLOT

DEFPLOT is a pre-simulation command that allows the user to specify what
plot data to collect over the period of simulation. The specified plot is

added to the present set of plot specifications. This plot data is later
graphed with the use of the PLOT command.

COMMAND SYNTAX:

DEFPLOT fentity-typel, fentity-namel,..., [entity-name

DEF

where:

{entity-typel is a required parameter indicating a valid entity-type
(i.e., Variable, Queue, Resource, Process, Item).

{entity-namel is a required parameter indicating the name of the entity
whose value is to be plotted. The user can enter a list of entity names
(up to a maximum of eighty characters) of the given entity type at a time.
Multiple DEFPLOT conmands can be used to define more plots.

FUNCTION RESULT:

This command causes an attribute form to be displayed, from which the user
must select one attribute. The list of attributes depends on the
entity-type selected.

When the attribute form has been entered, a statistics form is displayed,
fran which the user must select one statistic. The list of statistics
displayed depends on the entity-type and attribute selected.

If only one choice for either an attribute or a statistic exists, the form
is not displayed. The forms displayed are shown in figures 7-3 through
7-7. A sample plot is shown in figure 7-8. After the simulation has
generated plot data, the plots can be displayed at the user's graphics
terminal using the PLOT command (see section 7.12) and printed on a
graphics printer (see appendix A.4).

A maximum of ten plots may be specified during any Analysis session.

7-7

--.-.-'°- '"" "-° --"°- ' '°i'''"'o- --.''''"-;- "" "'' '"''.-.°°' ° '-- '. ---- .."°""-.-.-.-° .-.-

--Y v4 C. - - ,* .-

Figure 7-3. DEFPLOT Form for Items

'AL- 3'rE.ULED

* .* 4.

:'" " ['

'7, '" (P 4-,

Figure 7-4. DEFPLOT Forms for Process

7-8

" ' 1" It Im i . 2 I -4 * i - 1 i
i

I I I I I II - I i I

Figure 7-5. DEFPLOT Forms for Qeues

" --

1 ' F

Zr"':.' : E

Figure 7-5 DEPI' Foms for ueures

S 4CT

.tLATT'E *41

PER -:AM:ARD DE4

zrR'' IAI

Figure 7-6. DEFPLOT Forms for Resources

7-9

......-.-.-.-..... _...: .:..-....L-... ...-.:... .. - .v ".".".". -- .- .- .--. -. '-- - .-- ..- , -. . -.- .< -, ..- , -. :-. ,.- '. -, ..- . ,,.- .. .- ,-, .-."

.TE 4T~

CER: 1E14
::K.P: D EV

Figure 7-7. DEFPLOT Form for Variables

. >3;ENT Q1)E :4 3YSTE- FIN -:EM 115
:9904o. 4-

is4WO NefII 0@
52,40. sisaeu.

CLXX ;Me A~ITS

Figure 7-8. Sample Plot

7-10

AUI / DELETE

7.3 AUI COWtAND: DELETE

DELETE is a pre-simulation command that allows the user to delete plot
definitions which were set up through the DEFPLOT or GET camnands.

COMMAND SYNTAX:

DELETE TITLE,{titlenuml},..., rtitlenumn]
TITLE, *

DEL

where:

(titlenum] } is a required parameter indicating the number of the plot
definition to be deleted. A list of definition numbers may be entered, or
entering in asterisk, "*, will cause all of the current plot definitions
to be deleted.

FUNCTION RESULT:

This cammand causes the specified plot definitions to be deleted from
those being used for the current simulation run. If the definitions came
from a definition set in the database, they still reside in that set in
the database, i.e., the database is not modified by this command.

This cammand allows a user to retrieve plot definitions with the GET DEF
command (see section 7.6) and then use only selected definitions for a
particular simulation run.

The user can see the numbers of the current plot definitions with the LIST
TITLE ccumand (see section 7.10).

7-11 j7

. * ~

-. . ..- ll*. 6 **

AUI / EDIT

7.4 AUI COMMAND: EDIT

The EDIT command in the Analysis mode allows the user to change the value
of either a Constant, a Variable, or specification of the random number
stream used to represent probabilistic events. The value of a Variable
with an alpha literal as its initial value cannot be changed with this
command.

COMMAND SYNTAX:

EDIT {entity-typel, {entity-namel, {new-value}

E

where:

{entity-type} is a required parameter indicating which type of entity is
to be changed (either Constant, Variable, or Stream).

{entity-name} is a required parameter indicating the name of the Constant,
Variable or Stream (Branch, Load, or Action) which is to be changed.

{new-value} is a required parameter indicating the new value of a Constant
or Variable or for STREAM, the new random number stream. The new value
may be expressed in one to twelve digits, and includes the value zero.
The legal values of "new value" when specifying a random number stream are
1 through 10.

NOTE: Constants may be changed only before the start of the first
simulation period. Variables and Streams may be changed before the
start of any simulation period or at a breakpoint.

FUNTION RESULT:

The value of the Constant or Variable or Stream is changed to the new
value, and remains at that value until changed by another EDIT command.
This command only affects the current translation of the database;
therefore, at the end of an Analysis session the Constant or Variable or
Stream is restored to its original value.

If the value of the Stream is not changed, default values are:

Action: 3, for random Action durations

Branch: 2, for the PROB Primitive

Load: 1, for random intervals between a Loads' triggering of
another Process instance.

7-12

.*;JI ' .:'[

7.5 AUI COMMAND: END

The END command is used to terminate an Analysis session.

COMMAND SYNTAX:

END

FUWTION RESULT:

This cammand causes all displays to be cleared and, if plots were

generated, asks the user "Do you wish to save plot definitions? (YIN)"

and "Do you wish to save plot data? (Y/N)" If the answer to a question

is yes, the user is proinpted for the required information before control

returns to the AISIM READY level. Plot data and definitions are stored in

a file called project.PLT where project is the name of the user's project

database. Upon termination of an Anaylsis session, a copy of the output
report is automatically printed.

7-13

' -

AUI / GET

7.6 AUI COMMAND: GET

The GET canmand allows the user to retrieve a previously saved set of plot
definitions and add them to the current plot specification. The plot
specification defines what plot data will be collected during the
simulation. The LIST DEF comnand may be used to obtain a list of the
available plot definition sets.

COMMAND SYNTAX:

GET DEF,{setname}

where:

{setname} is the name of the set containing the plot definitions. The GET
command may be issued only before the first simulation period.

FUNCTION RESULT:

The set of plot definitions is retrieved and made a part of the current
set to be used by the Analysis function.

The LIST DEF command (see section 7.10) mriy be used to obtain a list of
the available plot definition sets.

Bq

7-14

".:

*.

- . .

- i y
1

t * . *

-°* * ** ..

AUI / GO

7.7 AUI CCtMtAND: GO

The GO command allows the user to start or resume a simulation run.

COMMAND SYNTAX:

GO [n]

G

where:

[n] is an optional parameter that specifies how many periods the
simulation is to run. If not given, the default result is that the entire
simulation defined by the selected Scenario is executed. If an n greater
than the number of periods specified in the Scenario is entered, the
simulation executes all periods specified in the Scenario and no more.

FUWTION RESULT:

This command, which is valid before any simulation period or at a
breakpoint, begins or resumes the simulation of the translated Scenario.

If used to resume the simulation, resumption occurs at the breakpoint or
at the beginning of the next simulation period.

7-15

L I M.° o O . ° ° . ° . ° o . , .

AUI / HELP

7.8 AUI COMMAND: HELP

The HELP command lists, on the user's terminal, the commands
that are

valid during each of the three different stages of an Analysis session

(prior, during, or after simulation).

COMMAND SYNTAX:

HELP

FUNTION RESULT:

The HELP command may be invoked prior to, during, or after
a simulation

run. When invoked, only those camands that are valid at that
point in

the Analysis session are displayed.

This caomand is valid at any time during an Analysis session.

During each of the three phases of analysis, the user
receives a different

output fran the HELP camand.

HELP invoked prior to sim:

GO G END LIST L LISTVAL LV

EDIT E SETBREAK SET CANBREAK CAN DEFPLOT DEF

INFRES GET DELETE DEL

HELP invoked during sim:

GO G END LIST L LISTVAL LV

EDIT E SETBREAK SET CANBREAK CAN PLOT

SAVE S

HELP invoked after sim:

END LIST L LISTVAL LV PLOT

SAVE S

7-16

S . .

AUI / INFRES

7.9 AUI COMAND: INFRES

The INFRES command causes the simulation to assume the existence of
infinite available Resources for specified Resources.

COMMAND SYNTAX:

INFRES {entity-name,..., [entity-name]

where:

{entity-name) is a required parameter indicating the name of the Resource

for which unlimited units are available. A list of up to eight Resource
names at a time may be entered, or an asterisk, "*", can be used to
indicate infinite resources for all Resource entities in the model. The
INFRES command can be entered multiple times to set infinite resources for
more entities.

FUNCTION RESULT:

This command, which is only valid before the start of the first simulation
period, allows the assumption that infinite Resources are available for
the specified Resources during the Scenario being simulated.

7-17

AUI / LIST

7.10 AUI COMM4AND: LIST

The LIST cammand displays all entities of a specified type. Included with
each entity is its name and its description.

COMMAND SYNTAX:

LIST {entity-typel

L

where:

{entity-type} is a required parameter indicating any of the specific model
entities listed below.

ENTITY ABBREVIATION

CONSTANT C

RESOURCE R

PROCESS P

VARIABLE V

ITEM

QUEUE Q

PLOT none

DEF none

TITLE none

This command is valid at any time during an Analysis session.

FUNCTION RESULT:

The user is presented with a list of all existing entities of the
requested type. If the argument is PLOT, a list of saved plot sets
is given. If the argument is DEF, a list of the saved plot definition
sets is given. If the argument is TITLE, a list of the plots defined for
the current simulation is given.

7-18

.

AUI / LISTVAL

7.11 AUI COMMAND: LISTVAL

The LISTVAL command allows the user to display the current statistics for

the named entity.

CMMAND SYNTAX:

LISTVAL {entity-typel, {entity-name}

LV

where:

{entity-typel is a required parameter indicating a valid Analysis system
entity-type. The valid entity types are the following:

Clock

Constant C

Item I

Process P

Queue Q

Resource R

Stream S

Variable V

{entity-namel is a required parameter indicating the name of the entity
whose value is to be listed. When requesting the Stream for Loads,
Branches or Actions, or the Clock, this field is omitted.

FUNTION RESULT:

The name of the entity requested is printed out with a listing of all
statistics for that entity.

The prompt "**** Enter YES/Y to continue, NO/N to abort ****" is
displayed. If the user wishes to end the LISTVAL listing, "NO" is entered
and the AUI READY prompt is displayed. If "YES" is entered the next page
of the listing is displayed, if there is one, with the prompt displayed
again. If there is no further data to be displayed, the user is returned
to the AUI ready level.

7-19

...............................

AD-AISI 556 ASIR (AUTOMATED INTERACTIVE SIMULATION MODELING SYSTEM) 3
VAX VERSION USER'..(U) HUGHES AIRCRAFT CO FULLERTON CA
GROUND SYSTENS GROUP S KNEEBURG FED 85 ESO-TR-95-127

UNCLRSSIFIED F336i5-81-C-5S99 FO 9/2

I EhhhhhhhhEshif
EIIIIIIIIIIIIIIIIIIII
II.fffllflIIIIIIlllll
IIIhhlIIIIIIIIIIIII l
IIIIIIIIIIIIIIIIIIIIIIIIIlflf
lUhlIIEIIE~llIIhEI

4

.' " -_ . ..-. ,, '- . -- .- - *- '- --. . -. . ..:"- " " " *-* * * -' - -'-- :- - -- -

V

IL-

MICROCOPY RESOLUTION TEST CHART
N6ATIONAL BUREAU Or STANOAR - 1963- A

%F

1:

L"

I) • • O 0 S V w S.- .~ .- : - - ~ .- -

,:', ' :. .. ':...', ',. . 5 - .- ' . .
, . . •. ,

S..
.

i"""
V ".'..'. "...

. "... "." ". '.. .". .". .'.' .'. . -. ."...
.

, :-. ",,,:~~.?.'2,.,...-,- _.- ,. '--,i,' ,,€, -.....................

~....

AUI / PLOT

7.12 AUI COMMAND: PLOT

The PLOT ccmnand allows the user to produce a graph of the plot data
collected during the simulation.

COMMAND SYNTAX:

PLOT

FUNCTION RESULT:

This command, which is valid at the end of a simulation period or at a
breakpoint, causes the display of a form containing the plot titles which
were defined using the DEFPLOT carinand (see section 7.2). Fra this form
the user may select any, all, or none of the listed titles.

When the selected titles have been entered, the user is presented with the
plot grid. The selected plots are produced and the user is prompted for
more Analysis mode commands.

Each of the plots is produced in a unique line pattern.

Once displayed on the terminal, graphs can be transferred to a hardcopy
device (see appendix A.4). An example of the form that is displayed to
allow the user to select a plot is shown in figure 7-9. A sample plot is
shown in figure 7-10.

NOTE: Due to limits imposed by graphics screen resolution, only a sample
of the data points produced by the simulation are included in the
plot (see appendix A.3).

7-20

- b .. . ". " , ' ,. , ." ' . °. " - - .° . . , -=-' ° .- , - -° . . -,. - .-. • °. -- °-" " " ° -.- .- ° "

i : ET " E ' J "U 4ISH '3I UQEMT T!ME :M SYSTEM FOR ITr q 4SG

CUR 4T a :N 4AIT QUEUE FOR RESOURCE vM
UYMLATIVE OEM 1 :N WAIT 'UEUE FOR qESOUFCE CH
JRRE4T 4MR !N SYSTEM FOR T_4 'qSG

Figure 7-9. Sample Form for Selecting Plots

";N oU"[FO"N S

,. Sam

• ~ ~~~~~I.Slli-! w y -+,. .

"-.Y ;,; , .J .~~REC

. , ..g", .E~ ' i~ i ...E .2 RESPC CM"

t s s .. v

NAA 'i V +

sl Ii~l .N 4SI . 60M.III 7sl .
"in,4.'LX, IN UNITS* i.gw . ' Igq . .US. IO.m . 7iu .

Figure 7-10. Sample Plot

7-21

AUI /SAVE

7.13 AUI COMM AND: SAVE

SAVE is used to save current plot definitions or plot data and transfer
them to the Analysis database.

COMM4AND SYNTAX:

SAVE ,settype ,{setname}, descr.

where:

fsettype) is

1. DEF to save plot definitions, or

2. PLOT to save plot data.

(setnamel I to 8 character name to be given to the set.

(descr] is a description of the set.

FUNCTION RESULT:

Plot definitions or plot data are flagged to be saved in the Analysis
database when the Analysis session is terminated. If {setnamej already
exists, the user is queried to reuse the old set. A "yes" response will
replace the old set with the new set. A "no" response will cause a prompt
for a new set name.

7-22

........................

AUI / SETBREAK

7.14 AUI COMMAND: SETBREAK

The SETBREAK command allows the user to set a single breakpoint in the
simulation run that is executed when a defined relationship has been
satisfied.

COMMAND SYNTAX:

SETBREAK {entity-type},{entity-nwne}, {rel-oper) ,{value}

SET

where:

[entity-type) is a required parameter indicating which type of entity is
to be tested (Variable, Resource, or Process).

{entity-name} is a required parameter indicating the nane of the entity to
be tested.

{rel-oper} is a required parameter indicating the relational operator (EQ,
NE, LE, GT, GE, LT) of the test.

{value} is a required parameter used to set the value for which the named
entity is to be tested. This value may be expressed in one to twelve
digits, and includes the value zero.

FUNCTION RESULT:

A breakpoint is usually used in verification of a model or to examine
Variable values. Typically, a simulation run executes start to finish and
does not allow the user to examine the simulation state at specific times
during simulation. The breakpoint allows the user to halt the simulation
and examine its state based upon the value of some system element.

This conand causes an attribute fozm to be displayed, fram which the user
must select one attribute. The list of attributes depends on the
entity-type selected.

When the attribute form has been entered, a statistics form is displayed,
fran which the user must select one statistic.

If there is only one choice for either an attribute or a statistic, the
form is not displayed. Attribute and statistic forms are shown in figures
7-4, 7-6, and 7-7.

This cowmand is valid at the beginning of a simulation period or at a
breakpoint.

When a breakpoint is reached, it is automatically cleared.

7-23

.-. -- - l . l

27
.!5 .C.-

7.15 TERMINATION OF AN AUI SESSION

An AUI session is terminated and control is transferred to the AISIM READY
level through the command:

END

FUNCTION RESULT:

When the END cammand is issued, any plot data or plot definitions which
the user saved during the AUI session are placed in the user's Analysis
database. Any attempts to reuse plot data or plot definition sets are
resolved at this time. The user is then returned to the AISIM READY
level.

7-24

SECTION 8

REPLOT USER INTERFACE (RUI)

The Replot User Interface (RUI) allows the user to:

(1) plot data saved from previous analysis runs,

(2) to delete old plot data and plot definition sets fram the data
base.

(3) create new plot data sets from data previously saved in separate
plot data sets.

W*en plot data is retrieved from the Analysis database via the GET comnand
(see section 8.4), the plot data is stored in a temporary plotset. This
temporary plotset exists for the current Replot session only. Data from
different Analysis runs may be retrieved from the database. All of the
data is then stored together in the temporary plotset, and may be plotted
on the same graph. The SAVE command (see section 8.7) will store all of
the data in the tenporary plotset into a new, permanent plotset in the
analysis database. The temporary plotset can be cleared out (i.e., plot
data in it is deleted) using the CLEAR ccauand (see section 8.1). The
CLEAR command does not affect permanent data stored in the database.

Once displayed on the terminal, plots can be transferred to a hardcopy
device (see appendix A.4).

The RUI level commands are described in detail on the following pages.

8-1

. -. . .. '.'- '.. ." '." .. ' .'.'..'.".' .", '. ' .- j' ,"' .- " " . -- .,

CLEAR

DELETE {settypel ,{setnamel
DEL

END

GET PLOT, {plotset}

LIST {entity-type)
L

PLOT

SAVE PLOT, {plotsetl , description]

S

Figure 8-1. RUI Ccmrnand Sumnary

8-2

RUI / CLAR

8.1 RUI CCtAND: CLEAR

CLEAR is used to delete plot data in the temporary plotset and to clear
the screen.

COMMAND SYNTAX:

CLEAR

FUNCTION RESULT:

The temporary plotset is emptied, and the screen is cleared. Plots saved
in the database are unaffected.

8-3

"' - ." -. , -- - '," •-." .-''-,,''..' '. '-.. - '. '' , ' ' ' - ''" ". '." , '. -" ." ," -' "-" . . - -.- "'- ." "'... -... .- .- ",-

RUI / DELETE

8.2 RUI COMMAND: DELETE

DELETE is used to delete a set of plot definitions or plot data from the
Analysis data base.

COMMAND SYNTAX:

DELETE {settype},{setnamel

DEL

where:

{settype} is:

DEF to delete plot definitions, or

PLOT to delete plot data.

{setname} is the name of the set to be deleted.

FUNTION RESULTS:

The specified set of plot data or plot definitions are deleted from the
Analysis data base. The current temporary plot set is unaffected.

8-4

RUI /END

8.3 RUI COMMAND: END

END is used to exit the RUI.

COMM AND SYNTAX:

END

FUNCTION RESULT:

The user is returned to the AISIM READY level.

RUI / GET

8.4 RUI COMMAND: GET

GET is used to retrieve a set of plot data and to make it part of the
current set of plots to be displayed by the PLOT caumand.

COMMAND SYNTAX:

GET plot,{plotset)

where:

{plotset} is the name of the set containing the desired plot data.

FUWTION RESULT:

The set of available plots is displayed. The user is then prampted for
the plot(s) to be retrieved for use by the PLOT camand.

The names of the plot data sets may be listed using the LIST command (see
section 8.5).

8

8-6

J .. .,-mo ,,..- ,,ia i hh n

RUTI / LIST

8.5 RUT COMMAND: LIST

LIST is used to list all entities of the specified type.

COMMAND SYNTAX:

LIST {entity-typel

where:

{entity-type} is a required parameter indicating a valid entity type. It
can be one of the following:

DEF to list plot definition sets

PLOT to list plot data sets

TITLE to list current plot titles

FUNCTION RESULTS:

Names of all entities of the requested type are displayed.

8-7

RUI / PLOT

8.6 RUI CO'MAND: PLOT

The PLOT caumand is used to display a plot of the activity of an entity.

COMMAND SYNTAX:

PLOT

FUNCTION RESULT:

The set of available plots is displayed. The user is then pronpted for
the plot(s) to be graphed.

When the selected plot titles have been entered, the appropriate plot is
displayed. Each of the plots is produced in a unique line pattern. If
only one plot is defined, it will be displayed with no pronpting.

Once displayed on the terminal, plots can be transferred to a hardcopy
device (see appendix A.4).

8-8

RUI / SAVE

8.7 RUI COMMAND: SAVE

The SAVE camand is used to save the data in the current temporary plot
set into a permanent plotset in the database.

COMMAND SYNTAX:

SAVE [setname}, [descr]
S

where:

(setname} is a 1 to 8 character name to be given to the set

[descr] is a description of the set

FUNCTION RESULT:

The plot data contained in the temporary plot set (as a result of previous
GET PLOT commands) is saved into the new plot set. This command enables
the user to combine plots from various simulation runs into a single
plotset.

8-9

.........-*--...-. .. .-...-- ..-- .-- .-' -' ..".." .'.-'.- -....- .'.-- '.-'." .'-- -'[-.-' -. '[..'-

SEC2TION 9

HARDCOPY USER INTERFACE (HUI)

The Hardcopy User Interface (HUI) is used to plot the flowharts for one,
several, or all Processes in the specified project database. In order for
the Hardcopy Function to be exercised, the following conditions must be in
effect:

For an HP2647 terminal:

1. An HP2631G Graphics Printer must be connected to the HP2647A
Graphics Terminal with the HP-IB comunications bus.

2. The HP-IB bus address of the printer must be set to one (i).

3. The printer must be turned on and set to ON LINE mode.

4. For proper formatting, the length of the paper in the printer
must be either 8 1/2 inches or 11 inches long.

For a TEK4105 terminal:

1. A TEK4695 graphics copier must be connected to the TEK4105
terminal.

For an HP2623 terminal:

1. The internal printer must be functional.

The HUI is entered fram the AISIM READY level by typing the cmnand:

HCOPY (PROJECT(project)] [TEPM(terminal)]

where:

(PROJECT(project)] is an optional parameter indicating the project
database with the Processes of interest. If omitted, the project is
assumed to be the last project specified in a previous AISIM READY level
ccmmand.

[TEM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified. The valid terminal types are the
following:

HP - HP2647A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal

9-1

The first information that the HUI requests is:

PLOT ALL THE PROCESSES IN DATABASE? (YES OR NO)

The user responds with "NO" to specify selected Processes for plotting. A
"YES" response will cause the system to automatically plot all of the
Processes contained in the project data base.

The system then requests information about the printing medium for an
HP2647A terminal:

ENTER PRINTER PAGE SIZE (A/B):
A) 8 1/2 INCHES
B) 11 INCHES.
LENGTH=

Depending on the paper in the graphics printer, the user responds by
entering "A" or "B". This information is used by the HUI to center the
Process graphics on the page and to insure correct form feeding. Entering
any other option besides "A" or "B" causes the prampt to be reissued.

The user is then instructed to:

POSITION THE PAPER PERFORATION ALONG THE T.O.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARRIAGE RETURN.

By doing this, the user sets up the proper alignment of the paper in the
printer and initiates execution of the Hardcopy plotting software.

When the carriage return has been entered, the HUI begins the plotting
procedure by initializing the HP2631G printer with the correct form
information. This initialization is usually characterized by a rapid
movement of the print head.

If the user is on an HP2623 terminal, only the following prompt occurs to
start the Hardcopy operation:

POSITION THE PAPER PERFORATION ALONG THE T.O.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARRIAGE RETURN.

When the user presses the carriage return, AISIM initiates execution of
the Hardcopy plotting software.

Note: the following terminal configuration must be set up on the HP2623
terminal in order to run the Hardcopy program. These settings need to be
set only once unless their configuration is changed at some later time.
First press the following function keys:

<AIDES>
<CONFIG KEY>
<DATACCMM CONE IG>

9-2

. ° . . . -. . . o . , . . - - . . . °

I . , , t .-I ...-. .m. .-.---. - " . , -- . ' , ,

Then tab through the form display to the

RECV PACE

field. Press the NEXT key until the field reads

XON/XOFF

Then tab to the

XMIT PACE

field. Press the following two keys:

<CONFIG KEY>
<TERMINAL CONFIG>

Tab through the form to the

INHNDSHK (G)

key and press the NEXT key until the field reads

YES

The terminal is now set up for the Hardcopy function.

If the user is on a TEK4105 terminal, the following information is
requested:

ENTER PRINTER PAGE SIZE (A/B):
A) 8 1/2 INCHES
B) SMALLER COPY SIZE
LENGTH=

This information is used to create standard size flow diagrams or reduced
size diagrams.

The user is then instructed to:

POSITION THE PAPER PERFORATION ALONG THE T.O.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARRIAGE RETURN.

Wen the user presses the carriage return, AISIM initiates execution of
the Hardcopy plotting software.

If the user has requested automatic plotting of all of the Processes, they

are plotted in alphabetic order.

If the user asked to select Processes, the following prompt is given:

PROCESS NAMES TO PLOT: (CR TO EXIT)

9-3

The user then supplies the namte of the Process he wishes plotted, followed
by a carriage return. The Process is plotted and the HUI responds with:

<Process name> PLOTTD

The system will then give the selection prompt again for another Process
to be plotted. The user continues entering Process names one at a time,
followed by a carriage return, or exits the HUJI by entering a carriage
return only.

The way in which the HUI plots a Process in either of the two modes
described above is as follows:

1. The first screen of Primitives in the Process are painted on the
screen of the terminal.

2. The Process name is written at the top of the page.

3. If the first page of the Process is being plotted, the Process
description is also written across the top of the page.

4. The Process graphics are transferred fram the terminal screen to
the page in the printer and a form feed is generated.

5. If there are no more Primitives in the Process, the plotting is
terminated for the Process; otherwise, the terminal screen is
erased, and next six primitives are painted on the screen, and
steps 2 through 5 are repeated.

When the HUI has finished plotting all of the requested Processes, the
message "ALL DONE" is printed and the user is returned to the AISIM READY
level.

9-4

SECTION 10

LIBRARY USER INTERFACE (UI)

The Library User Interface allows the user to do the following:

1. Move entities from a project database into a storage area called
a "buffer" using the MERGEOtUT sublevel of the LUI.

2. Move entities from a buffer into the database of another project

using the MERGEIN sublevel of the LUI.

3. Move entities from a buffer into a library of entities using the
CHECKIN sublevel of the LUI.

4. Move entities from a library to a buffer using the CHECKOUT
sublevel of the LUI.

5. Convert a pre-version 4.0 project database to a version 4.0
compatible project database.

Two libraries are available. One is a user library in which a user can
place entities for private use. Another is an AISIM system library which
contains models available for public use. Models are groups of AISIM

entities which represent some function or group of functions (see the
message routing submodel, appendix D). There are restrictions on the

placement of entities in the system library because it is desirable to
insure that the public models are not lost or tampered with. For this

reason, general users cannot modify the AISIM system library. Access is
restricted to the AISIM administrator.

The LUI sublevel is accessible from the AISIM READY level by issuing the

command:

LIBRARY

The system will then respond with the prompt:

LIBRARY READY

and the user may invoke any of the five LUI sublevels listed in the LUI
Commandi Summary figure 10-1. Figure 10-2 shows the actions of the various
LUI functions.

10-1

. . . .-- 7

CHECKIN [BUFFER (buffer)] [LIBRARY (library) I [TERM(terminal)]

CI [B(buffer)] (L(I.brary)] [T(ternina1)]

CHECKOUT (BUFFER (buffer)] [LIBRARY (library) J [TER(te-minal)]
CO L'B(buffer)I [L(library)] [T(terminal)]

CONERT [PROJBCT(project)] [TERM(terminal)]
CON [P(project)] [Tterxminal)]

MERGEIN [PROJCT (project)] [BUFFER (buffer)] [TER4(terminal)]

MI [P(project)] [B(buffer)] [T(terminal)]

MERGEOUT [PROJCT (project)] [BUFFER (buffer)] [TERM (terminal)]
MO [P(project)] [B(buffer)] [T(terminal)]

Figure 10-1. LUI Ccmtand &.mary

10-2

C2

0'0-

J-%~
be q

7- V- IW

Figure 10-2. Library Utility Data Flow Diagraml

10-3

LUI / CHBCKIN

10.1 LUI COMAND: CHBCKIN

To move the contents of the buffer to a library for permanent storage, one
issues the CHCKIN command. The user is prompted for the name of the
model to be checked in, as well as an optional reference number and
description.

To enter the CHECKIN sublevel, issue the command:

CHECKIN [BUFFER(buffer)] [LIBRARY(library)] (TERM(terminal)]

CI [B(buffer)] [L(library)] [T(terminal)]

where:

[B(buffer)] is an optional parameter indicating the buffer from which
entities are to be taken. If omitted, the buffer is assumed to be the
last buffer specified in a previous LIBRARY READY level command.

[L(library)] is a required parameter indicating the library into which the
entities are to be entered.

[T(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level command. The valid terminal types are the following:

HP - HP2647A or HP2648a terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VT100 terminal

FUNCTION RESULT:

The system queries the user for a required model name and an optional
document reference number and description. After getting this
information, the entities in the buffer are put into the library specified
under the given model name.

10-4

:.- :'- ,., ; ".,L .u~~~~~~~~~~~~~~~.:. .,...'..." " "-"-"' " "' ""-" "-' : '

LUI / CHECKOUT

10.2 LUI COMMAND: CHECKOUT

To copy a model stored in a library to " buffer, one enters the CHECKOUT
command. At this point the user can obtain a list of the models contained
in the library or a list of the given entity types contained in a named
model through the LIST command (see section 10.2.5). Models are copied
individually through the EXTRACT command which specifies the model to be
copied. A HELP command is available. The CHECKOUT sublevel commands are
described in detail in sections 10.2.1 through 10.2.5.

To enter the CHECKOUT sublevel, issue the command:

CHECKOUT [BUFFER(buffer)] [LIBRARY(library)] [TERM(terminal)]

CO [B(buffer)] (L(library)] [T (terminal)]

where:

[B(buffer)] is an optional parameter naming the buffer into which entities
are to be placed. If omitted, the buffer is assumed to be the last buffer
specified in a previous LIBRARY READY command.

[L(library)] is a required parameter indicating the library from which the
entities are to be taken.

IT(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VT100 terminal

FUNCTION RESULT:

The model or models specified by the user are written out to the buffer.
Fran the buffer they can be included in a project with the MERGEIN
command.

10-5

, +

"°° . ".° ' ° ° .' ."•. + ° ' . ' '. ' '. ° . . - .i "o .. '. o o " . " o ", . "° ', ~ + " - I .. . O ,o . .° o.- ° . .

DELETE {mode1-nafle
D

END
E

ExTRACT {model-namel
EXT

HELP

LIST {model-nanie)

Figure 10-3. Chieckout Commnand Rmary

10-6

CHECKOUT / DELETE

10.2.1 CO COXMMAND: DELETE

The DELETE camand instructs the system to delete a specified model from a
user's library.

COMMAND SYNTAX:

DELETE {model-name)

D

where:

{model-namel is the name of the model to be deleted from the library.

FUNCTION RESULT:

The specified model is deleted fram the library. If a user attempts to
delete a model fran the system library, the following message is
displayed: "THIS ACCOUNT IS WYYT AUTHORIZED TO MODIFY THE SYSTEM LIBRARY."

10-7

I " ?S? <"'I- -<- , -. "-'.'- ' <' ':'- '?.i' •".-.". -. .' -' " • .,.................."........-......-..................-... -

CHSCKOU)T /END
J 10.2.2 CO COMMiAND: END

The END commrand causes the system to exit the CHECKOUT sublevel and return

the user to the LIBRARY READY Level.

COM4MAND SYNTAX:

END

E

FUNCTION RESULT:

If any models were selected for extraction, the entities are written to a
buffer.

The system then returns to the LIBRARY READY level.

10-8

CHECKOUT / EXTRACT

10.2.3 CO COMAND: EXTRACT

The EXTRACT ccvrand instructs the system to copy a model from a library
into a buffer.

CCMMAND SYNTAX:

EXTRACT {model-name}

EXT

where:

(model-namel is the name of the model to be placed in the buffer.

FUNCTION RESULT:

The model specified is copied from the current library into the current
buffer.

10-9

..................................

-

CHECKOUT / HELP

10.2.4 CO CcIMAND: HELP

The HELP command enables the user to obtain a menu of the other commands
available in the CHBCKOUT sublevel.

CCMMAND SYNTAX:

HELP

FUNCTION RESULT:

A menu of available commnands is printed on the screen.

10-10

.

S. -.w - .

L

CHECKOUT / LIST

10.2.5 CO COMMAND: LIST

The LIST cainand enables the user to obtain a list of the models contained
in a system or user library, or to list the entities in a particular
model.

COMMAND SYNTAX:

LIST {model-name}"*
where:

{model-name) is the name of a model in the library

• is a literal parameter, indicating all models in the library.

FUNCTION RESULT:

If the parameter {modelname} is used, the system will display a list of

the names of the entities in the indicated model. After the names of each
entity type are displayed, the user is given the option of continuing to
list model entities or of returning to the CHEBC~YUT ready level. If the
parameter * is used, the system will display a list of the names of all
the models in the library.

10-11

o B n o . .-:- - .. . -.
"--, " : " " " -""" '-" J '-' .' ''''*- .. *:-".-- .; "-,J , '''"% ' %€-' •," ", ," - ". '%* " .""' -" . .

LUI /CONVERT

10.3 LUI COMMAND: CONVERT

The CONVERT command enables a user to convert a pre-version 4.0 project
database into a 4.0-compatible database. Old databases are incompatible
with version 4.0, so all old databases must be converted before they can
be used with version 4.0.

COMMAND SYNTAX:

CONVERT (PROJECT(project)] [TERM(terminal)]
CON [P(project)] [T(terminal)]

where:

(P(project)] is a required parameter indicating 'he name of the project
being converted.

[T(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level comand. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTi00 terminal

FUNCTION RESULT:

The project database project.DBF is saved in a database called
project.V30. The project database is then converted to a version 4.0
database and stored in the project name project.DBF. This database is now
suitable for use with all AISIM version 4.0 functions.

10-12

.--.....-. - "----.. .. ",. ,-.. . -"- -.- " -. -'." , ."."., ..- ... ". .- ,..- -.- ..-..... ' .'.'.

LUI / MERGEIN

10.4 LUI COMMAND: MERGEIN

To move the contents of a buffer to a project database, one enters the
MERGEIN command, specifying the name of the buffer and the name of the
project into whose database the buffer contents are to be copied.

COMMAND SYNTAX:

MERGEIN (PROJBCT(project)] [BUFFER(buffer)] [TERM(terminal)]

MI [P(project)] [B(buffer)] IT(terminal)]

where:

[P(project)] is a required parameter indicating the name of the project
into which the entities are to be merged.

(B(buffer)] is an optional parameter indicating the name of the buffer in
which the entities are stored. If omitted, the buffer is assumed to be
the last buffer specified in a previous LIBRARY READY command.

[T(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623A terminal

TEK - TEK4105 terminal

VT - VTI00 terminal

FUNCTION RESULT:

If no entity in the buffer is the same as an entity already present in the

database, the system responds:

0 CONFLICTS HAVE BEEN DETECTED IN MERGEIN INITIALIZATION

in which case the copying of the buffer contents will be completed and the
user will be returned to the LIBRARY READY level. If one or more names of
entities conflict with ones already in the project database, the user will
be prompted with:

n CONFLICTS HAVE BEEN DETECTED IN MERGEIN INITIALIZATION

where "n" is the number of conflicts. The system then asks:

DO YOU WISH TO RESOLVE THESE CONFLICTS?

Answering "no" aborts the Mergein. If the answer is "yes", the system
will then present the name of an entity which stands in conflict.

10-13

The user now has three commiand options to resolve the naming conflict.
First, he may command that the entity in the database be deleted in favor
of the one of the same name in the buffer. This is done by entering
REPLACE (RP). Secondly, he may comm~and that the entity in the buffer
which aroused the naming conflict be disregarded in the transferral from
the buffer to the database. This is done by issuing the commnd IGNORE
(IG). Thirdly, one may resolve the naming conflict by giving the entity
in the buffer a new name. This is done by means of the command RENAME
(RN) whose one parameter is the new name the user wishes to give the
entity. If the user should select as a new name one that is also being
used, the systemi will respond with a promipt for a different name. These
commnds are described in detail in sections 10.4.1 through 10.4.6.

This cycle of naming conflict resolution will be repeated until all of the
naming conflicts have been resolved. The system will then tell the user
that MERGEIN initialization has been completed, do the MERGEIN and
automatically return the user to the LIBRARY READY level.

NOTE: Resources associated with an architecture are not subject to the
REPLACE comm~and.

10-14

END

E

HELP

I GNORE
IG

INFO

RENAME frnaell
RN

REPLACE
RP

Figure 10-4. Mergein Command Smmkary

10-15

MERGEIN /END

10.4.1 MI COMMAND: END

The END comand, issued at the MERGEIN sublevel causes the system to exit

the MERGEIN sublevel and returns the user to the LIBRARY READY level.

COMMAND SYNTAX:

END

E

FUNCTION RESULT:

The system returns to the LIBRARY READY level.

10-16

- .'-° -"• -.-.. •.- .-".. - ". .- "" .'..- "- ".''.- .-.... " ""..''..-"..',"."-......-...".."...'-.-.........""".,....-......-.-..-,'..... -.. '--.,'. ,'-.-..

MERGEIN / HELP

10.4.2 MI CCMMAND: HELP

The HELP command enables the user to obtain a menu of the comnands
available in the MERGEIN sublevel.

CCMMAND SYNTAX:

HELP

FUNCTION RESULT:

A menu of available commands is printed on the screen.

10-17

MERGEIN / IGNORE

10.4.3 MI COMMAND: IGNORE

The IGNORF command enables the user to resolve any naming conflicts
encountered at the MERGEIN sublevel in favor of the entities that already
exist in the target database.

COMMAND SYNTAX:

IGNORE

IG

FUNCTION RESULT:

The entity indicated by the prompt is not copied into the project
database. The system then prompts the user with the next naming conflict,
if any, and proceeds with MERGEIN operation.

10-18

/...'...-...-...-.?... ,../<. -.-........ -.-~ ~.. -.. -. .-.... .-....... :....-...... ,....... ,......... ,...

MERGEIN / INFO

10.4.4 MI COMMAND: INFO
The INFO cammand furnishes the user with information on the options

available to resolve naming conflicts encountered in the MERGEIN sublevel.

COMMAND SYNTAX:

INFO

IN

FUNCTION RESULT:

The screen displays the following information:

IGNORE: THIS OPTION CAUSES THE NAMED ENTITY IN THE BUFFER TO BE E(LUDED
FROM THE MERGEIN OPERATION

RENAIE: THIS OPTION CHANGES ALL OCCURANCES OF THE ENTITY NAME IN THE
BUFFER TO THE NAME SPECIFIED BY THE USER

REPLACE: THIS OPTION DELETES THE NAMED ENTITY FROM THE USER DATA BASE,
ALLOWING THE ENTITY IN THE BUFFER TO BE MERGED IN

END: THIS OPTION TERMINATES THE MERGEIN PRE-PROCESSING WITHOUT RESOLVING
ANY MORE NAMING CONFLICTS AND RETURNS TO THE LUI READY LEVEL

10-19

MERGEIN / RENAME

10.4.5 MI COMAND: RENAME

The RENAME command allows the user to resolve a naming conflict
encountered during the MERGEIN operation by giving entities in the buffer
a unique name.

COMMAND SYNTAX:

RENAME {namell

RN

where:

{namell is the new name the entity is to be given.

FUNCTION RESULT:

The system checks to see whether the new name given to the entity creates
any naming conflicts. If it does, the system will prompt the user to that
effect, and await a new name. If the new name does not create any
conflicts, the entity is copied into the project database under its new
name. If there are naming conflicts with further entities, the system
then prompts the user for their resolution. If there are no remaining
naming conflicts, the MERGEIN operation begins.

10-20

.-:i:.::i::::::::_;::.J :-,:-':--.::-.-:......-...--........-..-.--.-..-...........,--....--,..--..•......-,.,..-.-,-...,-....
- " " " " " ,,',b i ,.ii " 'n

"
" m, "-" ,-"",':-" " ", '. ,."-,"- , ," ,-.", "... ,. ._..

MERGE IN /REPLACE

10.4.6 MI COMMAND: REPLACE

The REPLACE command enables the user to resolve a naming conflict
encountered in the MERGEIN sublevel in favor of entities that exist in the
buffer.

COMMAND SYNTAX:

REPLACE

RP

FUNCTION RESULT:

The entity indicated in the prompt is written into the database and the
old entity of the same name is deleted. The system then proceeds to
consideration of the next naming conflict if any exist. Otherwise, the
MERGEIN operation begins.

10-21

. -..... ' -

LUI / MERGEOUT

10.5 LUI COMMAND: MERGEOUT

When the user wishes to place entities from a project database into a
buffer, he does so via the MERGEOUT camand, specifying the name of the
project and the name of the buffer into which the entities are to be
copied. Entities in the project are copied one at a time by name through
the SELECT command. If the user needs a list of the entities of a given
type, he may obtain one through the LIST cammand. Also available here is
the HELP command which provides a menu of the other available commands.
The END command will return the user to the LIBRARY READY level. These
commands are described in detail in sections 10.5.1 through 10.5.4.

To obtain access to the MERGEOUT sublevel, issue the command,

MERGEOUT [PROJECT (project)] (BUFFER (buffer)] [TERM(terminal)]

MO [P (project)] [B(buffer] [T (terminal)]

* where:

[P(project)] is a required parameter indicating the name of the project
from which the entities are to be copied.

[B(buffer)] is an optional parameter indicating the name of the buffer
into which the entities are to be transferred are stored. If amitted, the
buffer is assuxned to be the last buffer specified in a previous LIBRARY
READY level command.

[T(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If amitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTI00 terminal

FUNCTION RESULT:

The user is given a "*" prompt, from which he can issue one of the
following commands.

1) LIST {entity-typel, to list entities in project database.

2) SELECT {entity-type},{entity-name}, to select an entity to be
merged out of the project database.

3) END, which will terminate the selection of entities to be copied.

10-22

.. -.

END

HELP

LIST (entity-type'

SELEXJT fertity-typel ,{entity-name}

Figure 10-5. Mergeout Ccwwnand Sumnary

10-23

MERGEOUT /END

10.5.1 MO COMMAND: END

The END comand terminates the session at the MERGEOUT sublevel and causes
entities in the current project database which have been flagged by the
SELECT command to be copied into the current buffer.

COMMAND SYNTAX:

END

FUNCTION RESULT:

The user will be prompted with the question:

DO YOU WANT TO LIST YOUR SELECTIONS ON THE SCREEN?

A "no" answer will cause the Mergeout procedure to take place. When all
of the flagged entities have been copied into the buffer the system will
return to the LIBRARY READY level.

A "yes" answer will produce a list of the entities flagged in the SELET
ccmmand. The user will then be pranpted as to whether he wishes to
proceed with the Mergeout operation. A "yes" answer to this second
question will cause the flagged entities to be copied into the current
buffer and the system wil return to the LIBRARY READY level. A "no"
answer will return the user immediately to the LIBRARY READY level.

10-24

b °'"* J ' d°J ° °''" ' . ''°
J ° "

""
' "

" .-- " . " o "' '. " --.-.. - " ." " %-.° *'*". "' -- *
-

- " . . •

MERGEOUT / HELP

10.5.2 MO COC.AND: HELP

The HELP cammand enables the user to obtain a menu of the other command
options available in the MERGEOUT sublevel.

COMMAND SYNTAX:

HELP

FUNCTION RESULT:

A menu of available cammand options is printed on the screen.

10-25

. - ' -. - . . . --.- - - - ., ' - - -

MERGEOUT /LIST

10.5.3 MO COMIMAND: LIST

The LIST commxand enables the user to obtain a list of the names of the

entities of a given type that are contained in the current project.

COM~MAND SYNTAX:

LIST (entity-type)

L

where:

{entity-typel is the type of entity. The valid entity types are the

following:

Action A

Constant C

Item~ I

Process P

Queue Q

Resource R

Table T

Variable V

FUNCTION RESULT:

The screen will display a list of the names of the entities of the

specified type in the current project.

10-26

..

MERGEOUT / SELECT

10.5.4 MO COMMAND: SELEC'T

The SELECT cammand allows the user to specify which entities are to be
merged out of a project database to a buffer. Scenarios and Loads cannot
be selected.

COMMAND SYNTAX:

SELECT (entity-typel, tentity-namel
S

where:

(entity-type) is the type of entity to be merged out. The valid entity
types are the following:

Action A

Constant C

Item I

Process P

Queue Q

Resource R

Table T

Variable V

[entity-name) is the name of the entity to be merged out.

FUNCTION RESULT:

The specified entity is flagged for the Mergeout operation. The operation
will take place only when the END command is issued.

-.

10-2

SECTION 11

AISIM SIMULATION REPORTS

When a simulation is run, a numiber of Processes are initiated at various
times throughout the simulation period. As their execution proceeds they
contend for available Resources such as machines and operators. The
simulation stops at the end of a predefined period and produces output
statistics.

In general, any high-level performance factor measurable on a real system
in terms of time, percentages, or counts of events can be measured during
the model run. Experiments that are virtually impossible to run on a real
system can be constructed and easily measured in the model. Specifically,
measures that may be obtained are:

- Resource utilization statistics
- Total numiber of Processes comnpleted
- Average elapsed time for Process com~plet ion
- System and job delays associated with actions
- Statistics on queue sizes and timing
- Variable changes during simulation
- System and job delays associated with Resources
- Execution count of Process steps

Two forms of statistical output are available to the user as a result of
the simulation. Interactive output, displayed on the terminal screen, is
available at any user-defined breakpoint, at the end of simulation
periods, or at the end of the simulation.

The second form of output is a listing, obtained off-line, which lists the
simulation measures mentioned above.

The following sections describe the simulation outputs and how to obtain
themi.

11.1 INTERACTIVE RESULTS AND HOWd TO OBTAIN THEM

Interactive results can be viewed on the terminal while in the AUI level.
A review of the AUI level shows that several commrands are available for
viewing data after simulation periods, after breakpoints, and after
simulation termination. The DEFPLOVT commnand is used before simulation is
started to select the graphs that the user wishes to view after simulation
(see the DEFPLOT commiand description in section 7.2 for attributes and
statistics of entities that can be graphed). The LISTVAE. coand can be
used at the points mentioned above to view simulation data concerning
model entities (see the LJISTVAL canmnad description in section 7.11 for
attributes and statistics of entities that can be viewed). The PLOT

coimmand is also used at the points mentioned above to view graphically the
statistics which were kept due to the DEFPLOT plot definitions. See the
PLOT commnand definition in section 7.12 for examples of the forms and
graphs that are displayed to the user as a result of this cainiiad.

11.2 REPORT RESL7VTS ANID HOW4 TO OBTAIN THEM'

The commanrds to view and print results are available at the AISIM READY
level. As the simulation executes, simulation results are automiatically
stored in a database file named:

project .RPT

where:

project indicates that the model output report to be accessed was
generated by an analyze session on the design database named PROJErCT.

Two AISIM READY level commiands are available to manipulate this data file.
The PRINT command (see section 5.17) is used to print a listing of the
simulation report at the local hardcopy facility. The EDIT command (see
section 5.6) allows the user to view the project.RPT file through the use
of the EDT text editor. See section 11.3 for a brief discussion of
relevant EDT text editor commnds. See the EDT Users Manual for
additional information on the EDT text editor.

The project.RPT file contains a numnber of reports that describe the model
that was simulated and the results of the simulation. On the following
pages each of these reports is described and examples of results are
given.

INITIALIZATION REPORT: This report displays the contents of the model
inputs as used during this simulation. Elements of this report are:

1) Global Constant Definition
2) Table Definition
3) Global Variable Definition
4) Item Definition
5) Queue Definition
6) Resource Definition
7) Architecture Legal Path Definition
8) Action Definition
9) Process Definition

10) Load Definition
11) Scenario Definition

Figures 11-1 through 11-5 show the various parts of a typical
initialization report.

11-2

I - .- * -

$SS$$$$SSSIS$$ISI$$$$$$$SSSS1$$S$$$$SS$$SS$$SS$$$$$$$SS$$$SS$$$$$$$

S S I MULA T I ON REPORT
S AISIM VERSION 4.0S
S HUGHES AIRCRAFT COMPANY S
3 02/6/85 S
$1$$$$$$$S$SSS$$$$SSSSSS$$$SSS$$$$S$$$$SS$$$$S$$1SS1$S111111111

GLOBAL CONSTANT DEFINITION

CONSTANT INITIAL

MNEMONIC VALUE COMMENT

PERLNGTH 750000

TABLE DEFINITION

GLOBAL VARIABLE DEFINITION

VARIABLE INITIAL
MNEMONIC VALUE COMMENT

B-LNTH 756 7S MSG LNTH FOR HQ -> B
B-PR! 11 11 - PRIORITY OF B-ORIGIN PROCESS
BBLNTH 756 750 - LENGTH OF B NODE TO B NODE MESSAGE
BECHOPRI 11 11 - PRIORITY OF BECHO PROCESS
CHQGOVHD 28 .0280 - SEC PER WORD OF GRAPHICS OVERHEAD AT CHQ
CHQHOVHD 10 .00160 - SEC WORD PROCESSING OF HARD COPY AT CHQ
CHQLNTH 750 750*FN6*COMPRESSION = MSG LNTH HQ -> CHQ
CHQPRI 11 11 - PRIORITY OF CHQ PROCESS
GRLNTH 16666 16660 - GRAPHICS RESULT FROM CHQ TO HQ
HCLNTH 206 206 - LENGTH OF HARD COPY MESSAGE
HCPRI 11 11 - PRIORITY OF HARD COPY PROCESS
HCRLNTH 6366 6366 - LENGTH OF HARD COPY RESULT
HQGGLNTH 266 20 - LENGTH OF GRAPHICS REQUEST
HQGGPRI 11 11 - PRIORITY OF HQ HARDCOPY PROCESS
HQHGLNTH 266 206 - LENGTH OF HARDCOPY REQUEST TO CHQ
HQHGPRI 11 11 - PRIORITY OF HAROCOPY PROCESS
HQLNTH 756 756 - LENGTH OF MESSAGE SENT TO HQ NODES
HQOVHD 8 .000080 - SEC PER WORD PROCESSING AT HQ NODES
HQPRI 11 11 - PRIORITY OF HQ PROCESS
RT.OVHD 8 THIS IS A GLOBAL VALUE FOR ROUTING OVERHEAD
V.ROUTER 6 MONITOR VARIBALE TO PLOT ROUTE OVERHEAD (COMPUTED)
VD.CS 6.000001 CONTEXT SWITCHING DELTA TIME
VM.CS 6.000001 CONTEXT SWITCHING MEAN TIME
VM.ROUTE 8 6.006680 - TIME PER WORD ROUTED
VRATE 33.3 .006333 SEC TIME PER CHAR
VSPEED 0 UPDATED WITH CHANNEL SPEED FOR ALL TRANSFERS

Figure 11-1. Initialization Report - Constants, Tables, and
Global Variables

ii-3

.°.. " -. . *.

, __._- -. ,, / ,'< .- ,...-.- ,.. -, : : . : : : -.,...

17

ITEM DEFINITION

ITEM)ESCR:P"'ON

ACK ACKNOWLEDGEk4ENT GENERATED AT COMM CENTERS BOUND FOR S
ATTR. :NITIAL
NAME VAL..E

HOPS
LENGTH ACKLEN

T L
YESS a
ORIGIN a
RETRAN 1
,NODE a
TYPE SGOOD

ITEM DESCRIPTION

MSG04 MESSAGES GENERATED AT S-NODES BOUND FOR COMM CENTERS
ATTR. INI T IAL
NAME VALUE

ACKREC 0
DESTI I
DEST2 1
OEST3 1
OEST4 I
ENDTM 99999999
ERRPROS ERRPR804
HOPS HOPS04
LENGTH LENGTH04
NXTACKNM 1
ORIGIN S04
RETRAN 1
SATDELAY DELAY04
SNUM S04NUM

STARTTU $CLOCK

QUEUE DEFINITION

QUEUE MAXIMUM
MNEMONIC SIZE COMMENT

CONTROLQ INFINITE PRIORITY ORDERED QUEUE OF RFT MESSAGES

Figure 11-2. Initialization Report - Items and Queues

11-4

.--......-.. ~ ~ ~ ~ 2 7..

RESOURCE DEFINITION

RESOURCE TOTAL INI7:AL
MNEMONIC * UNITS # UNITS DESCRIPTIO0N

61 1 1 RESOURCE FOR NODE
ATTR. INITIAL
NAME VALUE

COST 0
D.CS VD.CS
M.CS VM.CS
M.ROUTE VM.ROUTE
RATE 0

B1S1.A 1 1 RESOURCE FOR CHANNEL CONNECTOR
ATTR. INITIAL
NAME VALUE

COST 0
RATE VRATE

BIS1.B 1 1 RESOURCE FOR CHANNEL CONNECTOR
ATTR. INITIAL
NAME VALUE

COST 0
RATE VRATE

92 1 1 RESOURCE FOR NODE
ATTR. INITIAL
NAME VALUE

COST 0
D.CS VD.CS
M.CS VM.CS
M.ROUTE VM.ROUTE
RATE S

ARCHITECTURE LEGAL PATH DEFINITION

FROM TO NEXT VIA
DEVICE DEVICE DEVICE LINK

91 81 S1 S1SI.A
91 82 S1 BIS1.A
91 93 S1 BISI.A
61 84 S1 8ISI.A
B1 B5 S1 B1S1.A
81 B $1 BIS1.A
91 B7 S1 BIS1.A
91 CH S1 91S1.A
91 HI S1 BIS1.A
81 H2 S1 B1Si.A
91 S1 S1 B1S1.A
81 52 S1 81S1.A
91 S3 S1 BISI.A
81 S4 S1 B1S1.A
91 $5 51 81S1.A
81 S6 51 B151.A
91 S7 S1 91S1.A

Figure 11-3. Initialization Report - Resources and Architecture
Legal Path Table

11-5

. . "- . o .- -. . . --
.* .* . . -. . . *. .

ACTION DEFINITION

ACTION ACTION
MNEMONIC CLASS COMMENT

CHQGD.OH MACHINE CHQ PROCESSING OF GRAPHICS REQUEST
CHQHD.OH MACHINE CHQ PROCESSING OF HARD COPY REQUEST
CS.OH CPU PROCESSING TO PERFORM CONTEXT SWITCHING
DUMMYACT MACHINE ACTION -0 ENABLE CYCLIC PROGRAM CYCLES
HQ.OH MACHINE HQ PROCESSING OF MESSAGE
OVERHEAD MACHINE TIME FOR GENERAL USE
ROUTE.OH CPU PROCESSING DELAY TO ROUTE A MESSAGE AT NODE
XFER.OH CHANNEL PROCESSING DELAY TO ROUTE A MESSAGE OVER A CHANNEL

PROCESS DEFINITION

PROCESS
MNEMONIC DESCRIPTION

B-ORIGIN THIS IS A B-NODE STUB PROCESS

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL NO

GIVEN MSG
RETURN MSG
END

LOCAL VARIABLES OF PROCESS B-ORIGIN

1 MSG (1)
PROCESS
MNEMONIC DESCRIPTION

BECHO THIS PROCESS ECHOES MESSAGE BACK TO ORIGINATOR

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL NO
GIVEN MSG
RETURN MSG
ASSIGN MSG FNODE GET ORIGINATING NODE

TO.NODE
CALL MRS WAIT 0 ROUTE RETURN MESSAGE
GIVEN B-ORIGIN B-PRI SREQNORE

B-LNTH TO.NODE
END

LOCAL VARIABLES OF PROCESS BECHO

I MSG (I) 2 TO.NODE 3 MRS (P) 4 B-ORIGIN (P)

Figure 11-4. Initialization Report - Actions and Processes

11-6

.* .. -x :-. . -

LOAD
MNEMONIC DESCRIPTION

LOADS07 57 LOAD =ROM BASES - B7
LOAD NODES

B7

PROCESS SCHEDULE
MNEMONIC MAX # METHOD MEAN DELTA PRIORITY

DATABB07 125 EXPONENT 1440389 0
DATABCHQ 125 EXPONENT 1440389 0
DATABHQ1 125 EXPONENT 1440389 0
HCOPYCHQ 125 EXPONENT 1464253 0

SCENARIO DEFINITION

SCENARIO
MNEMONIC DESCRIPTION

SCENARIO 300 SECONDS PER PERIOD X 1 PERIODS 300 SECS

PERIOD

LENGTH

7500000

PERIOD PERIOD PERIOD PERIOD PERIOD PERIOD PERIOD
MNEMONIC MNEMONIC MNEMONIC MNEMONIC MNEMONIC MNEMONIC MNEMONIC

1

TRIGGER TIME TO SCHEDULE TRIGGER TIME TO SCHEDULE
MNEMONIC SCHEDULE PRIORITY MNEMONIC SCHEDULE PRIORITY

LOADS01 0 0 LOADS02 0 0
LOAOS03 0 0 LOADS04 0 0
LOADS06 0 0 LOADS06 0 0
LOADS07 0 0 LOADHQ1 0 0
LOADHQ2 0 0

0 ERRORS WERE DETECTED DURING MODEL INITIALIZATION

Figure 11-5. Initialization Report - Loads and Scenario

11-7

•" --. " ,' ,--' i--i,,,', i',' ' .' - ,Z, "",.-.-.. .-.... '....-.

11.2.1 Constant Report

This report shows the value of the constants at simulation termination.

An example of this report is shown in figure 11-6 where the labeled

columns have the following significance.

CONSTANT: The name of the Constant

CURRENT VALUE: The Constant's value (in real numbers) at the end of
the simulation.

S:WULATION TIME 3241.aO6 UNITS

CONSTANT REPORT

CURRENT
CCNSTANT VALUE...

BER .000 1
CCCHRATE 2.4
CHRATE01 1.2
CHRATE02 2.4
CHRATEO3 2.4
CMRATE04 .6
C RATE0S .075
CHRATE06 .075

CHRATE07 1.2
CHRATE08 .3
CHRATE09 2.4
CHRATE10 .3
C4RATE11 1.2
CHRA-E12 .3
CLOCKVAL 0
DELAY61 6
DELAY62 0
DELAY03 0
DELAY04 0
DELAYOS 0
DELAYOG 0

Figure 11-6. Constant Report

11-8

,-'..,...','..'.'[........'..-...... ..v : < ,.,...'..-.,...'...,

11.2.2 Variable Report

Variable reports are divided into the numeric and the non-numeric
variables. A sample of the report for nunerical variables is shown in

figure 11-7, where the columns have the following significance.

VARIABLE: The name of the Variable.

TOTAL SAMPLES: The number of times the Variable has been set to a
value over the simulation period, including its
initialization at the start of the simulation.

CURRENT: The value of the Variable at the end of the
simulation.

MEAN: The mean of all values (including its initial value)
that the Variable was set to over the simulation
(i.e., the sum of the values divided by TOTAL
SAMPLES).

STD DEV: The standard deviation of the values that the
Variable was set to over the simulation.

MINIMUM: The minimum value that the Variable took on during
the simulation.

MAXIMUM: The maximum value that the Variable took on during
the simulation.

SIMULATION TIME = 7500000. UNITS

VARIABLE REPORT

NUMERIC VARIABLES...

TOTAL -------------------------- VALUE -------------------------

VARIABLE SAMPLES. CURRENT... MEAN STD DEV... MINIMUM... MAXIMUM...

B-LNTH 75. 750. o. 750. 750.
B-PRI l., i1. 0. 11. il.

BBLNTH 1 7SO. 750. 0. 750. 750.

BECHOPRI 1 11. , 11. 0..

CHQGOVHO 1 28. 28. 0. 28. 28.

CHQHOVHD 1 10. 10. 0. 10. 10.

CHQLNTH 1 750. 750. 0. 750. 750.

CHQPRI 1 Ii. 11. 0. 11. 11.

GRLNTH 1 20000. 10000. 0. 10000. 10000.

HCLNTH 1 200. 200. o. 200. 200.
HCPRI I 11. il1 0. 11. it.

HCRLNTH 1 8300. 6300. 0. 8300. 6300.

HQGGLNTH 1 200. 200. 0. 200. 200.

HQGGPRI 1 11. 11. 0. 11. 11.

HQHGLNTH 1 200. 200. 0. 200. 200.

HQHGPRI 1 11. 11. 0. 11. 11.

HQLNTH 1 7SO. 750. 0. 750. 750.

HQOVHD 1 8. 8. 0. 8. 8.
HQPRI 1 11. 11. 0. 11. 11.

RT.OVHO 816 8. 8. 0. 8. 8.

V.ROUTER 1 0. 0. 0. 0. 0.

Figure 11-7. Numeric Variable Report

11-9

,VL. -. . . ." '. " " " . .

' "- , ,., ;, :-:' :--, '.-' ' a,., . k -,m'. . . , . -

The report for Variables taking non-numeric values is illustrated in

figure 11-8 where the labeled columns have the following significance.

VARIABLE: The name of the Variable.

CURRENT TYPE: The type of entity or construct that the Variable is
set to at the end of the simulation.

CURRENT VALUE: The name of the entity or construct to which the
Variable is set at the end of the simulation.

NON-NUMERIC VARIABLES...

CURRENT CURRENT
VARIABLE TYPE VALUE

ACKSTS11 ALPHA SCORRECT
STATE013 ALPHA $CORRECT

STATES14 ALPHA SC3RPEC-
STATES21 ALPHA SCORRECT
STATE022 ALPHA SERROR
STATE023 ALPHA SCORRECT
STATE024 ALPHA $CORRECT
STATE031 ALPHA SERROR
STATE32 ALPHA $CORRECT
STATE033 ALPHA $CORRECT
STATES34 ALPHA $CORRECT
STATE041 ALPHA $CORRECT
STATES42 ALPHA $CORRECT
STATE043 ALPHA SCORRECT
STATES44 ALPHA SCORRECT

STATEOSI ALPHA SERROR
STATE0S2 ALPHA SERROR
STA

T
E0S3 ALPHA $ERROR

STATEE54 ALPHA $ERROR
STATE061 ALPHA 3ERROR
STATE062 ALPHA $ERROR
STATE063 ALPHA $ERROR
STATE064 ALPHA SERROR
STATE071 ALPHA SCORRECT
STATE072 ALPHA SCORRECT

STATES73 ALPHA $CORRECT
STATE074 ALPHA SCORRECT
VAR RESOURCE CPU

Figure 11-8. Non-numeric Variable Report

11-10

.. p

11.2.3 Item Report

Figure 11-9 illustrates the Item Report, where the labeled columns have
th. following significance.

ITEM NAME: The name of the Item.

NUMBER CREATED: The number of instances of this Item that have been
created with the CREATE or SEND Primitives over the
simulation.

NUMBER DESTR'D: The number of instances of this Item that have been
destroyed with the DESTROY Primitive over the
simulation.

TIME IN SYSTEM - MINIMUM: The minimum time any instance of the Item
was in the system.

TIME IN SYSTEM - MAXIMUM: The maximum time any instance of the Item
was in the system.

TIME IN SYSTEM - AVERAGE: The average time any instance of the Item
was in the system.

TIME IN SYSTEM - STD DEV: The standard deviation in the times the
Item spent in the system.

MINIMUM, MAXIMUM, AVERAGE, STD DEV are based on the individual Item
instances' time in the system. This statistic is calculated whenever an
Item instance is destroyed (with the DESTROY Primitive) and is aqual to
the time of destruction minus the time of creation (with the CREATE or
SEND Primitive). Therefore, Items in the system that have not been
destroyed at simulation end will not be reflected in these statistics.

SIMULATION TIME = 3241.60 UNITS

ITEM REPORT

ITEM NUMBER NUMBER TIME IN SYSTEM
NAME CREATED DESTR'D MINIMUM... MAXIMUM... AVERAGE... STO DEV...
R TI3G 67 45 89.69 1615.92 557.62 232.50
RFT2MSG 54 37 52.47 1630.96 654. 1 2S3.07
RFT3MSG 56 41 166.29 1024.44 644.82 237.49
RFT4MSG 51 33 186.87 1655.16 60.14 238.19
RFTSMSG 52 39 186.34 964.16 612.76 231.33

Figure 11-9. Item Report

, : '. .- ; ' ,,, '= , ,. ,,,,. .'. '....,..... .. -.. _, _,_-.,......,j

11.2.4 Resource Report

This report gives statistics on each Resource's presence in the idle
state, busy queue, and inactive state as well as the numiber of Processes
put into a wait queue for the Resource. These queues are discussed in
detail in the section on systEm defined queues (see section 3.5). Four
kinds of statistics are kept on the busy and wait queues: (1) entities
put into the queue (INTO), (2) entities taken out of a queue (OUT OF), (3)
the number in the queue (#), and (4) the time entities spent in the queue
(TIME). Statistics on the number in the state are kept for the idle and
inactive states.

An example of the Resource Report on these states and queues is shown in
figure 11-10. For each row of each queue or state the numnbers have the
following significance.

The TOTAL NUMiBER of the INTO and OUT OF rows indicate the number of
entities that were, respectively, placed in or taken out of the queue.

The CURRENT # is the number of entities in the queue or state at the time
the simulation run was carnpleted.

The MEAN # is the time weighted average of the number of entities in the
queue or state over the simulation.

The STD 0EV # is the standard deviation in the number of entities in the
queue or state over the simulation.

The MINIMUM~ # is the minjimum number of entities in the queue or state at
one time over the simulation.

The MAXIMUM # is the maximum number of entities in the queue or state at
one time over the simulation.

The MEAN TIME is the average time entities spent on the queue.

The STD DEV TIME is the standard deviation in the time that the entities
spent on queue.

The MINIMUM TIME is the minimum time any entity was in the queue.

The MAXIMUM TIME is the maximumn time any entity was in the queue.

The REQUEST TIME statistics provide the mean, standard deviation, minimnum
and maximum of the time it took for the request for each unit of the
Resource to be satisfied. I.e., the request time is the difference
between the time an allocate request is made and the time the Resource
unit is placed in the busy queue.

The field labeled "CURRENTLY ALLOCATED TO PROCESSES:" provides a list of
the Processes whose task instances had allocated the Resource at
simulation end.

11-12

The field labeled "PRCCESSES CURRENTLY WAITING:" provides a list of the
Process task instances which were suspended while waiting for the Resource
at the end of the simulation.

SIMULATION TIME = 750909. UNITS

RESOURCE REPORT

TOTAL
RESOURCE NUMBER CURRENT... MEAN STO DEV... MINIMUM... MAXIMUM...

B1
IDLE 1. .941 .236 0. 1.

REQUEST TIME 577.941 2431.301 0. 14013.

INTO BUSY 34
OUT OF BUSY 34

BUSY 0. .059 .236 0. 1.
BUSY TIME 13058.828 17383.084 1500. 5400.063

INACTIVE 0. 0. 0. 0. 0.

INTO WAIT 34
OUT OF WAIT 34

WAITING 0. .003 .051 0. 1.
WAIT TIME 577.936 2431.295 0. 14613.

CURRENTLY ALLOCATED
TO PROCESSES: NONE

PROCESSES CURRENTLY
WAITING: NONE

Figure 11-10. Resource Report

11-13

.w= I

11.2.5 Action Report

The Action Report provides the user with statistics on the time consu.med
by each Action. Statistics are gathered on two aspects of such time
consumnpt ion, cal led "useful time" and "delay time".

"Useful time" is equal to the amount of time the Action was being
executed, whereas "delay time" is the time between the initiation and
ccrnpletion of an Action during which the execution of the Action (i.e.,
the Process in which it appears) is suspended. Both useful time and delay
time are calculated only upon the completion of the Action. Therefore,
Actions which are active at the end of the simulation are not included in
these statistics.

A sample Action Report is shown in figure 11-11. The name immaediately
below the ACTION heading is the user-defined name of the Action. For the
row libeled USEFUL TIME the statistics have the following significance:

TOTAL SAMPLES: the number of times the useful time was calculated
(i.e., the numnber of times the Action was camipleted).

MEAN: The average useful time of this Action over the simulation
(i.e., the total time taken by the Action divided by TOTAL SAMPLES).

S'D DEV: The standard deviation in the useful times.

MINIMUM: The minimum time taken in the execution of the Action over
the simulation.

MAXIMUM: The maximumr time taken in the execution of the Action over
the simulation.

% TIME OF TOTYAL: The percent of the total simulation time for which
this Action was executing. Since AISIM allows for the parallel
execution of the same Action, this figure can be greater than 100.

The figures in the row labeled DELAY TIME have the following significance.

TOTAL SAMPLES: The numnber of times the delay time was calculated
(i.e., the number of times the Action was cczpleted).
This will always be equal to the TOTAL SAMPLES of
USEFUL TIME.

MEAN: The average time the Action was delayed during
execution over the simulation (i.e., the total time
taken up in delay divided by TOTAL SAMPLES).

STD DEV: The standard deviation in the delay times over the
simulation.

MINIMUM: The minimum delay time of an Action over the
simulation.

MAXIMUM: The maximumt delay time of an Action over the
simulation.

11-14

..r wP

Note that % OF TOTAL is not calculated for the delay time.

SIMULATION TIME = 7506666. UNITS

ACTION REPORT

TOTAL % TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.

CHQGD.OH
USEFUL TIME 51 169803.923 89251.581 62999.969 286060.063 74.667
DELAY TIME 51 0. 0. 0. 0.

TOTAL % TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.

HQ.OH
USEFUL TIME 78 8666. 0. 6666. 6066. 6.240
DELAY TIME 78 153.846 1349.995 0. 12000.

TOTAL % TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.

ROUTE.OH
USEFUL TIME 811 14601.233 21362.749 1599.969 8066. 157.888
DELAY TIME 811 0. 6. 6. 0.

TOTAL X TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.

XFER.OH
USEFUL TIME 639 569S3.965 82729.325 766. 417666. 434.127
DELAY TIME 839 6. 0. 0. 0.

Figure 11-11. Action Report

11-15

. . ..,. .. ," -,, , . ,-,-. .,.-.'.'.',', .. ' .,.'.'.'.. "... ,. , ,-.. .. .,',',-*-." ,,' .,.-. .,,,

r
11.2.6 Queue Report

The Queue Report provides statistics on the utilization of user defined
Queues. The report contains information both on the number of entities
stored on the Queue as well as information on the impact the utilization
of the Queue had on Process execution and suspension. A sample Queue
Report is shown in figure 11-12. The rows labeled FILED ON, REMOVED FROtM,
IN QUEUE and TIME IN QUEUE key statistics on the manipulation of the
Queue itself. The rows labeled TASKS BLOCKED, TASKS RESUMED, # BEING
BLOCKED, TIME BLOCKED refer to statistics on Process tasks that have been
suspended because they attempted to file an entity on a Queue that was
full (i.e., whose maximum number had been exceeded.)

The statistics in each category have the following significance.

The TOTAL NUMBER/FILED ON is the number of entities that have been
filed on the Queue over the whole simulation.

The TOTAL NUMBER/REMOVED FROM is the number of entities that have
been removed from the Queue over the simulation.

The CURRENT/# IN QUEUE is the num1,er of entities on the Queue at the
time of simulation end.

The MEAN/# IN QUEUE is the time weighted average of the number of
entities on the Queue over the simulation.

The STD DEV/# IN QUEUE is the standard deviation in the number of
entities on the Queue over the simulation.

The MINIMUM/# IN QUEUE is the minimum number of entities on the Queue
at any time during the simulation (this statistic is always zero
since the Queue will be empty at the start of the simulation).

The MAXIMUM/# IN QUEUE is the maximum number of entities residing on
the Queue at any time during the simulation.

The MEAN/TIME IN QUEUE is the average time entities spent on the
Queue.

The STD DEV/TIME IN QUEUE is the standard deviation of the in times
entities spent on the Queue.

The MINIMUM/TIME IN QUEUE is the least amount of time any entity
spent on the Queue.

The MAXIMUM/TIME IN QUEUE is the greatest amount of time any entity
spent on the Queue.

The statistics on the blocking of tasks due to the filling of Queues have
the following significance.

The TOTAL NUMBER/TASKS BLOCK is the number of Process tasks that were
suspended over the simulation due to Queue blocking.

11-16

". ." -". " ' . --" " ",-.". -" "; ""-", -". -. - ." - -- ". -. "-" . . "-". " - " -",- - - --- . "- -- "-" -"-". --- i

The TOTAL NUMBER/TASKS RESUMED is the nurber of Process tasks resumed
after having been blocked due to the filling of a Queue.

The CURRENT/# BEING BLOCKED is the number of Process tasks blocked at
the time of simulation end.

The MEAN/# BEING BLOCKED is the average of the number of Process
tasks being blocked over the simulation.

The STD DEV/# BEING BLOCKED is the standard deviation in the number
of tasks being blocked over the simulation.

The MINIMUM/# BEING BLOCKED is the fewest number of Process tasks
blocked at any time during the simulation.

The MAXIMUM/# BEING BLOCKED is the greatest number of Process tasks
blocked at any time during the simulation.

The MEAN/TIME BLOCKED is the average of the times Process tasks were
blocked during the simulation.

The STD DEV/TIME BLOCKED is the standard deviation in the times
Process tasks were blocked during the simulation.

The MINIMUM/TIME BLOCKED is the least amount of time a Process task
was blocked during the simulation.

The MAXIMUM/TIME BLOCKED is the greatest amount of time a Process
task was blocked during the simulation.

QUEUE REPORT

TOTAL
QUEUE NUMBER CURRENT... MEAN STO 0EV... dINIMUIM... MAXIMUM...

CONTROLQ
FILED ON 273

REMOVED FROM 273
IN QUEUE 0. 4.5S69 3.477 0. 13.6W

TIME IN QUEUE S4.237 30.619 8.099 102 60f

TASKS BLOCKED 0
TASKS RESUMED 0

* BEING BLOCKED 0. 6. 0. 0. 0.
TIME BLOCKED a. 6. 0. 6.

Figure 11-12. Queue Report

11-17

11.2.7 Process Report

This report gives information on all aspects of Process executions. As
mentioned before, Processes contendi for Resources and many times must wait
for another Process to complete before the current Process completes.
Times spent in these states as well as other important data are recorded
automiatically for the user.

The Process Report provides the following statistics:

1) TOTAL SAMPLES - the num~ber of times the Process was initiated,
the total (overall Process instances) number of times the Process
waited for another Process to comnplete and for required Resources
to beccrme available.

2) The sum total of time spent in all executions of this Process,
sumi total of waits on Processes and also Resources.

3) The mean time required for execution of the Process, for waiting
on Processes, for waiting on Resources.

4) The standard deviation of time the Process required for
execution, for waiting on Processes, for waiting on Resources.

5) The minimm time required for Process execution, minimum time
spent waiting for other Processes, minimum time spent waiting for
Resources.

6) The maximumi time required for Process execution, maximum time
spent waiting for other Processes, maximumi time spent waiting for
Resources.

7) Total number of times this Process was scheduled to execute.

8) The number of times this Process was scheduled to execute by a
Load or Scenario.

9) The number of times this Process was scheduled to execute due to
a call frcan another Process.

10) The total numnber of times this Process completed execution.

11) The total number of times this Process did not complete
execution.

12) Total numiber of times the execution of this Process was suspended
during execution.

13) Names of Items used in this Process.

14) Numnber of each Item created by this Process.

15) Number of each Item passed to this Process via the SEND

Primitive.

* ~ ~~~~~~~~ -. -7 -*--- ** - - -

16) Number of each Item passed out of this Process via the SEND
.Primitive.

17) Number of each Item destroyed by this Process.

18) Total number of each It~m used in this Process.

19) Mean time each Item was held by this Process.

20) Minimum time an Itemi was held by this Process.

21) Maximum time an Item was held by this Process.

22) Standard deviation of time an Item was held by this Process.

23) Verbal description of the Process.

24) How many times each Primitive in the Process was executed.

25) Any entry Primitives and their names.

26) Names of other Primitives in this Process.

27) Any parameters or Items associated with each Primitive in the
Process.

28) Any comment associated with each Primitive in the Process.

An example of a Process Report is shown in figure 11-13.

11-19

..... ~2 2

TOTAL

PROCESS SAMPLES SUM MEAN STD DEV.. MINIMUM MAXIMUM

TRANSMIT

TOTAL 194 121608 022 626.845 216.331 178 875 969 625
PROCESS WAIT 0 0 0. 0. 0. 0

RESOURCE WAIT 0 0 0. 0. 0. 0.

TOTAL & N AUTO a CALL A OF # NOT # TIMES
SCHEDULE SCHEDULE SCHEDULE COMPLETE COMPLETE SUSPEND

279 0 2 9 272 7 0

ITEM CREATED RECEIVED SENT DESTR'O

RFT1MSG 0 0 0 51

RFT2MSG 0 0 0 61
RFT3MSG 0 0 0 47

RFT4MSG 0 0 0 54

RFTSMSG 0 0 0 60

;ROCFSS HOLDING TIME

ITEM a SMPLS MEAN. MINIMUM. MAXIMUM. STO DEv

RFT;1MSG 5 6 7 0 33 75 8.1

RFT2MSG 61 17 37 0 40 50 Il 23

RFT3MSG 4' 26 5" 0 47 25 10 82
RFT4MSG 54 41 62 13 50 67 50 13 48

RF5MSG 60 54 1 21 00 @1 00 14 08

PROCESS DESCRIPTION
........ 1..

TRANSMIT TRANSMIT THE MESSAGES

COUNT ENTRY OPCODF PARM PARM PARM COMMENT
..... I- l...........................

279 START NO
279 GIVEN LMSG MSGLGTH TIME

279 MTTIME CONSTANT TIME WAIT FOR MT SLOTS TO ARIVE

273 DESTROy LMSG STOP TIME IN SYSTEM CLOCK

273 MTUSE CONSTANT 3 3?5 WAIT TILL MIDDLE OF MTSLOI
272 EVAL TSLOTUSD ADD CREDIT USE OF FIRST MTSI.OT

272 TSLOTUSO 1

272 NEWSLOT ENTRY

272 (VAL MSGLGrH SUBTRACT CREDIT TRANS OF AN MTSLOT

272 MSGLGTH 1

272 COMPARE MSGLGTH EQ TRANSMISSION FINISHED'

272 0 END

O MTUSE CONSTANT 6 75 WAIT TILL MIDDLE Or MTSLO
0 EVAL TSLOTUSD ADD

0 TSLOIUSO I
0 BRANCH NEWSLOT 100

272 END ENTRY

272 ENO

Figure 11-13. Process Report

11-20

i.. ~~~~~~~~~~~~~~~ n' .. * """-"' °"'- "":-,,:-" -=---- -:--

11.3 COMMANDS RELEVANT TO VIEWING OUTPUT REPORTS

To view output reports of simulation runs of a model frcm the AISIM READY
level, one uses the EDIT cammand.

Since the output report is too long to fit on a terminal screen, to view
it all, one must use sane text editing connands. Below is a brief review
of the commands that are most useful for this purpose. (This discussion
refers to the VAX/VMS EDT text editor).

Note: In the following commands "." represents the current line in the
file.

11.3.1 TOP, BOTTOM

To orient the screen to either the top or bottom of the report one should
enter one of these two commands.

TYPE BEGIN
TYPE END

11.3.2 UP, DOWN

To move the report either up or down on the screen n lines issue the
command,

TYPE .-n

or

TYPE .+n

and the line n lines up or down from the current one will be printed.

11.3.3 FIND

To find a certain sequence of characters, sequence, enter the characters
between delimiting single quotes.

TYPE 'SEQUENCE'

and the screen will print the pearest line down in the text containing the
characters sequence.

11-21

.

11. 3.4 LIST

To print n consecutive lines down from the one to which one is currently

oriented, issues the ccinand,

TYPE .:.+

and the next n lines will be displayed on the screen.

11-22

APPENDIX A

OPERATITONAL PROCEDUJRES AND IMPORTANT INFORMATION

A. 1 IMPORTACE OF DATABASE BACKUP AND ALLOCATION

Processes and the other model entities are stored on disk as they are
input to AISIM. Changes and additions made to this information are
reflected in the current version of the database on disk. It is possible
for this database to be damaged if the computer system fails or if the
input session is abnormally terminated while a change or addition is being
made so that it is unusable. In addition, errors made in inputting may
make the stored information nonsensical if they are severe enough. For
these reasons, the BACKUP commrand is provided.

it is wise to periodically create a backup copy of the database with the
AISIM READY level command "BACKUP". Should a database be damaged, it may
be recreated fran the last BACKUP copy by using the "RESTORE" command.

A. 2 ABNOMAL TERMINATION OF A DUI OR AUT SESSION

To terminate a DUI or AUI session normally the user must enter the camnand
END. If the user becomes entwined in a situation which disallows normal
system operation, the following procedures should be followed:

it should be noted that while in a DUI session, only the data entered
prior to the last SAVE comm~and will remain intact after this procedure is
executed. If the system appears to malfunction, caution should be used in
issuing a SAVE command. If the database is the source of the malfunction
and a SAVE commiand is issued, the user might destroy the entire database.
It is better to lose one session' s data (by not saving) than to destroy an
entire database.

if the user is on an HP terminal, strike the TERMINAL RESET key until
the message "TERMINAL READY" appears in the upper left hand corner of
the screen; two strikes in a one--second period are required.

Then on any terminal, type the cntl (control) key and the C key
simultaneously.

If no response to these procedures is seen, the user should disconnect the
modem, and try to log in and reinitiate AISIM.

If the system, responds by displaying "$" the user should reinvoke AISIM.

A-1

A.3 AISIM PLOTS

The following section is intended to describe in detail how the simulation
plot results produced by the AISIM Analysis function are generated. This
discussion addresses the implementation of the plot function in AISIM with
respect to the physical characteristics of the terminal display and the
driving software. For a user of AISIM, it is generally not necessary to
be aware of implemientation specific details. This section has been
included because the plot output fromn AISIM simulation runs is the most
visible form of output produced. This data may appear to contradict other
results produced by the AISIM Analyze function (output listing
statistics). This explanation is intended to describe how this function
works so that the AISIM user can explain apparent anomialies.

AISIM produces plotted data for many statistics. The plots represent
"instantaneous" output from the simulation because in all cases, a defined
statistic is plotted against time (the y-axis is the statistic value, the
x-axis is the simulation clock). Time is normally considered to be
continuous; therefore, it is "reasonable" to assumne that AISIM plots are
continuous. In reality, this is not the case. AISIM plots are produced
by sampling statistics at discrete intervals during the simulation. Each
sample defines a point on the plot. A couple of relationships need to be
known to understand how this sampling technique produces plots.

The first relationship a user must be aware of is the resolution of the
display screen. The terminal graphics terminals have a raster scan
display. A raster is the smallest addressable unit which can be
illuminated on the screen. Within the AISIM plot axis there are a fixed
number of rasters along the x-axis (700 for the HP terminals, 500 for
TEK4105, and 1024 for M'rOO). What this implies is that up to a fixed
number of points can be plotted along the x-axis without exceeding the
hardware limitations of the display. When an AISIM user specified a
plot be displayed which has more than a fixed number of points, the AISIM
software reduces the data sent to the terminal so that it can be
displayed. This data reduction has the effect of "ignoring" some points.
When points are ignored, the obvious result is that the plots lose
accuracy. This can account for discrepancies between the plotted data and
the simulation summnary results, specifically with respect to the minimum
and maximum statistics. The simulation report may indicate that a
Resource queue had a maximum length of 100 when a plot of the current
number in wait for a Resource over time indicates only a maximuim value of
80.

Another problem which can occur with respect to plotting is that the plot
sampling can miss activity occurring in the simulation because the sample
interval is too long. The following default relationship is embedded in
the AISIM software. One hundred data points are sampled for each period
in the Scenario definition of a simulation run.

What this implies is that if a Scenario is defined to have only one
period, only one hundred plot samples will be collected. The sample
interval is calculated as the period length/l00.0. Suppose the period
length is defined to be 3000 units (where units are seconds, thi! is 1
hour). Plot samples are collected every 36 units (or 36 seconds). If

A-2

activity occurs in the model over time intervals less that 36 units, this
data will not be captured for plotting. This could occur if a user wanted
to see a plot of disk utilization of a computer system over a one-hour
time frame. Since disk operations occur in seconds or less, a plot of the
current number busy of the Resource disk would miss most of the data
points if samples were taken every 36 seconds.

It is possible to adjust the plot sampling interval in the Scenario
definition. The ntmber of samples collected for each plot is computed as
the number of periods in the Scenario multiplied by 100 points.

To reiterate, AISIM plots produce graphs of statistics collected during a
simulation run, and display the results over time. The data for these
plots is collected by sampling discrete intervals. It is not generated by
state changes detected by the simulator. Therefore, the "instantaneous"
plots of "CURRENT" data over time can disagree with accumulated statistics
in the simulation listing.

A.4 PRODUCING HARDCOPIES OF THE TERIMINAL DISPLAY

In addition to producing hardcopies of the Process flowcharts, the HP2631G
Graphics Printer, the TEK4695 copier, or the HP2623 internal printer can
be used to produce hardcopies of the architecture, plots, or Process
diagrams.

The user is warned especially against copying forms on the TEK4105
terminal since this action will Empty the ink wells on the TEK4695 copier.
The interfaces on a TEK4105 terminal define the screen to be a dark blue
color, so attempts to copy the forms screen will cause a page full of blue
ink.

To produce hardcopies of the terminal display of an HP2647A terminal, the
following must be in effect:

1) An HP2631G Graphics Printer must be connected to the HP2647A

Graphics Terminal with the HP-IB communications bus.

2) The HP-IB bus address of the printer must be set to one.

3) The printer must be set to ON LINE mode.

To transfer the display information to the printer, the user first presses
the <COMMAND> key. This places the terminal in "command mode".

To transfer text (e.g., Plot titles, LISTVAL responses), the user then
presses the following keys in succession: <F1> <Fl> <F3> <F3> <F3> <F7>
<1> <RETURN>.

To transfer graphics (e.g., Architecture displays, plots), the user
presses the following keys in succession: <Fl> <Fl> <F3> <F3> <F4> <F7>
<1> <RETURN>.

A-3

rr~~~~~~rrr~~~~" PIPI r r -.- r r r rr . r w rx ~

NOTE: Any text preceeding the cursor position will not be transferred.
Thus, the user should be sure the cursor is placed in the proper position
before placing the terminal in "cnmand mode".

When the transfer process is cainplete, the user exits the "ccmiuand mode"
by once again pressing the <COMMtAND> key.

If the user is on a TEK4l05 terminal equipped with a TEK4695 printer, the
SCOPY button will copy any data on the screen fral the terminal to the
printer.

The user can print the snaller size copies by using the following
procedure before the copy is made:4

1. Press the SETUP key (an asterisk should appear).

2. Type HCSIZE 1

3. Press the SETUP key again

4. Perform the copy

The terminal can be reset for normal copy size by following the above
procedure and typing a zero instead of a one in line 2.

If the user is on a HP2623 terminal, the following keys will cause any
data on the screen to be copied to the internal printer:

<modes> - display terminal modes
<remote> - set terminal off line
<enter key> - perform copy
<remote> - set terminal back on line

A. 5 EXECUJTING SIMULATION RUNS AS BATCH JOBS

Once a developed model has been translated, it is not necessary to execute
simulation runs interactively. They may be executed as batch jobs. The
advantages of the batch method are:

1) The user does not have to remain at the terminal through out the
AISIM session. All necessary job information is specified up
front and the system takes charge.

2) It is not necessary to use a graphics terminal. Any terminal
connected to the VAX will suffice.

3) Multiple simulation runs can execute concurrently.

4) Simulation runs can be deferred to execute during off-peak hours.

To set up a batch execution, the user types "BATICH" at the AISIM READY
level. The system then promtpts the user for the following information.

A-4

-.- .- - -

ENTER NAME OF PROJECT (1-8 char): the name of the project to be used.

DO YOU WISH TO TRANSLATE THE MODEL? yes or no based on the user's choice.

ENTER COMMANDS FOR AISIM RUN (<CR> TO END)

Enter cammands for AISIM run. Allowable AUI commands are CANBREAK,
DELETE, EDIT, END, GET DEF, GO, INFRES and SAVE.

Commands are typed one per line, in the order they are to be acted upon.
Cammands must be typed in the correct format. The GO and END commands are
mandatory. All other camands are optional.

After the above processing is completed, a file called SUBBATCH.CCM will
have been created. This file can then be submitted to an appropriate
batch queue with any other information such as at what time the job should
run (see VAX SUBMIT command for available parameters). If no extra
information is necessary, the following command will submit the AISIM job
to the default batch queue to be run immediately:

SUBMIT SUBBATCH.COM

Figures A-1 and A-2 show sample batch run setups.

A-5

................................ *...*.*. . .

°. .

b o•° " - . *° . .- .. o ,. °. , - .- . -. . . -

IF

-.+ +, . . , 1 -i: -, I-f < - .u. . ..

....~ ~~ .+M r - ' ,- -+-=

-
T

Jr* "A,

-- . .= r ~m.jI-++< .' ,r.+ rwrh. ij (nr'

'r " 4. % +.- +r+r" * -r+ ... ++a' f iPf Tn r~jr'

-

-4 nr
- D a + L ".

Figure A-1. Sample Batch Job Submissionl

A-6

- . - - -. . +w + . '. %C . . .

- 4 - - T- n

-~ ~ A~ m; AT L t~~ 'r~

-- -•

U a. - :

PPATP4J M"' nr.A rr.?

. U: - >M

. .nrn:. !flal cr

"M D , _.., -

Figure A-2. Sample Batch job Submission with Plots

A-7

'a . . - ':... . ,:%: ,.
*- ---:T£ --". -' . ---

S... * --- c..'.E T -

A.6 RANDOMNESS IN RESULTS

There are ten randan number streams available for use by the functions
producing the random results associated with Loads, probabilistic
branching (with the PROB Primitive), and Action durations.

For the Load entity, the randam number stream is used by the probability
functions that determine the time between Process triggerings. For the
PROB Primitive, the random number stream is used in evaluating whether or
not execution should branch to the given point. For the ACTION Primitive,
the randam nunber stream is used by the probability functions that
determine the duration of an Action.

The user may select the randam number stream used by each of these three
functions using the EDIT ccnand (see section 7.4) in the AUI. The
default values are one, two, three, for Loads, PROB Primitives, and ACTION
Primitives, respectively. The current stream assignments can be displayed
with the LISTVAL camnand (see section 7.11) in the AUI.

When simulating a system, the user needs to have a sufficient number of
observations to analyze in order to draw valid conclusions. It is
sametimes desirable to execute additional simulation runs with the sane
conditions to obtain additional observations. To do this, the random
nunber streams should be changed for each additional run. Otherwise, the
results will not change.

A-8

-',, --- -'_.Z._, o-a,. '._,_% _ '' ."."-,* - . >::, ° ,,' " * " " . ' '" . ',- " . * - ". • ""o "" "
- "a'""'"|mL'" od'""ndmadn.." " " ,' "' " .. ". '. . .. *'_".; " "

-~~~ tow". .. S

APPENDIX B

AISIM ERRORS

If there are errors detected during the initialization, an error message
will be written below the invalid entry. Following is a list of the
initialization error messages and their causes.

ERROR - VALUE MUST BE NUMERIC

A non-numeric value was found as the value of a Constant. The

defined value of a Constant must be numeric.

ERROR - TABLE ENTRIES MUST BE NUERIC

A non-numeric value was found as an entry in a D or C type Table.
All D or C type Table entries must be numeric.

ERROR - ALPHA TABLE X ENTRY IS ILLEGAL TYPE

In an alpha Table, an x entry was a Keyword or other invalid entry.
The only valid entries are references to Actions, Item, Processes,
Queues, Resources, or Tables.

###ERROR - ALPHA TAbLE Y ENTRY IS ILLEGAL TYPE

In an alpha Table, a y entry was a Keyword or other invalid entry.
The only valid entries are references to Actions, Items, Processes,
Queues, Resources, or Tables.

ERROR - VARIABLE INITIALIZED TO ILLEGAL TYPE

A Keyword or other illegal type was found as the value of a variable.
Variables must be initialized to Actions, Processes, Queues,
Resources, Tables, Alpha Literals, or numerics.

ERROR - ATTRIBUTE DEFINED MORE THAN ONCE

An Item, Process, or Resource attribute was defined more than once.

The duplicate attribute definition should be removed.

ERROR - ***** NOT DEFINED AS A GLOBAL CONSTANT

A non-nutneric value in the size field of a QUEUE was not defined as a
global Constant. A non-numeric value for the size must either be the
word "INFINITE" or be a previously defined global Constant.

B-1

A non-numeric value in the total or initial units field of a Resource
was not defined as a global Constant. The total and initial units of
a Resource must each be either a numeric value or be a previously
defined global Constant.

In the definition of a Scenario, a non-numeric value in the schedule
field was not defined as a global Constant. The schedule must be a
numeric value or a defined Constant.

In the definition of a Scenario, a non-numeric value in the priority
fiell was not defined as a global Constant. The priority must be a
numeric value or a defined Constant.

ERROR - INITIAL # OF RESOURCE UNITS IS GREATER THAN TOTAL # OF UNITS

In a Resource definition, the initial number of units defined was
greater than the total number of units of that Resource which were to
be made available.

ERROR - FROM4 NODE IS N~OT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the FROMI
NODE column was not the name of a defined Resource.

ERROR - TO NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the TO
NODE column was not the name of a defined Resource.

ERROR - NEXT NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the NEXT
NODE column was not the name of a defined Resource.

ERROR - LINK IS NOT DEFINED) AS A RESOURCE

In an entry in the Legal Path Table, the link specified in the VIA
LINK column was not the name of a defined Resource.

ERROR - LABEL MUST START IN COLUMN 1 OR OPCODE MUST START IN COLUMN
10

In a Process definition, a value was encountered which did not start
in column 1 or in column 10. If the value is a label, it must start
in column 1, or if it is an opcode, it must start in column 10.

**#ERROR - OPCODE MUST START IN COLUMN 10

In a process definition, a non-label value was encountered which did

not start in column 10. All opcodes must start in column 10.

B-2

###ERROR - NODE NAME IS NOT RECOGN4IZED AS A RESOURCE

An invalid value was encountered in the node field of a Process
definition. This field must be blank, contain the word "'ALL", or
contain a value which resolves to the name of a defined Resource.

~**ERROR - NAME IN GIVENS LIST IS IN ERROR IN THIS CONTEXT

GLOBAL NAMES, NUMBERS AND CLOCK CANNOT BE GIVEN

The value of a given parameter for the START figure of a Process was
either a numeric value or the CLOCK. Numeric values and the CLOCK
cannot be used as given parameters in a Process.

*## ERROR - ***** ITEM IN RECEIVES LIST IS IN ERROR

This is a general message indicating an error in a START figure of
type "ITEM~" of a Process. This message is generally followed by one
of the two following messages which more specifically describe the
error.

###ERROR - ITEMb APPEARS TIWICE IN RECEIVES LIST

in the definition of a START Primitive of type "It~rn," an Item was
listed more than once. An Item should only occur 'once in the
receives list of the START Primitive.

#*#ERROR - REF'ERECE IN REC2EIVES LIST IS NOT DEFINED AS AN ITEM

In the definition of a START Primitive of type "ITEM4," a value which
was listed in the receives list was not defined as an Item. A
Process with an ITEM1 START can only receive Itemis.

ERROR - ******** NUMERIC REFERENCE IN CALL PROCESS FIELD

In the definition of a CALL Primitive in a Process, the process name
field contained a numeric value or a keyword. This field must
contain the name of a defined Process to be initiated.

***ERROR - RETURN PARAMETERS NOT ALLOED FOR CALL NO.JAIT OR BLOCK

In the definition of a CALL Primitive in a Process, return parameters
were defined, but the CALL option was defined as NOWAIT or BLOCK.
only Processes called with a WAIT option can return parameters.

###* ERROR - ******** NUMERIC OR GLOBAL MAY NOT BE USED AS RETURN

In the definition of a CALL Primitive in a Process, a numeric value,
keyword, or the CLOCK was defined as a return parameter. Numeric
values, keywords and the CLOCK cannot be used as return parameters.

B-3

................. .. *... *~..*. ... *. . *. . .
5

. %

ERROR - BRANCH CONTINUATION DOES NOT FOLLOW A BRANCH STATEM ENTr

In the definition of a BRANCH Primitive of a Process, the label to
branch to was not given. A branch Primitive must includ~e a label to
branch to.

ERROR - KEYWORD CANNOT BE USED IN PROB

In the definition of a probabilistic BRANCH Primitive of a Process,
CLOCK or a keyword was used as the probability of BRANCH. These
cannot be used as the BRANCH probability. Valid values for the
BRANCH probability are numeric values and local and global Variables
and Constants.

##*# ERROR - ***** CHECK REFERENCE MUST BE RESOURCE OR QUEUE

In the definition of a TEST Primitive in a Process, the value to be
tested was defined as a numeric, a global Variable, or a global
Constant. The value to be tested must be a reference to either a
Resource or Queue.

ERROR - ******** NUMERIC REFERENCE INVALID IN RESOURCE FIELD

In the definition of a RESET Primitive in a Process, the value to be
reset was a reference to a numeric value. The value to be reset must
be a reference to a defined Resource whose allocation is to be
changed.

In the definition of an ALLOC Primitive in a process, the value in
the name field was a reference to a numeric value. The value in the
name field must be the name of a reference to a defined Resource
which is to be allocated.

In the definition of a DEALLOC Primitive in a Process, the value in
the name f ield was a reference to a numeric value. The value in the
name field must be the name of a reference to a defined Resource
which is to be deallocated.

ERROR - ***** REFERENCE INVALID IN ALLOCATION TYPE FIELD

In the definition of an ALLOX Primitive in a Process, the value in
the allocation type field was invalid. The valid entries are
"PARTIAL" and "ALL".*

ERROR - BRANCH LABEL ***** NOT DEFINED IN OFD

In the definition of a Process, a BRANCH Primitive referenced a label
for which there was no corresponding ENTRY label defined. An ENTRY
Primitive must be used to define the label to be BRANCHed to.

ERROR - Loop LABEL ***** NOT DEFINED IN PROCESS

In the definition of a Process, a LOOP Primitive referenced a label
for which there was no corresponding ENTRY label defined. An ENTRY
Primitive must be used to define the label to be branched to.

B-4

................. .A. %

#**ERROR - CHECK LABEL *****NOT DEFINED IN PROCESS

In the definition of a Process, a TEST Primitive referenced a label
for which there was no corresponding ENTRY label defined. An ENTRY
Primitive must be used to define the label to be branched to.

#ERROR - COMPARE LABEL *** NOT DEFINED IN PROCESS

In the definition of a Process, a COMPARE Primitive referenced a
label for which there was no corresponding ENTRY label defined. An
ENTRY Primitive must be used to define the label to be branched to.

*## ERROR - ALREADY DEFINED AS AN ENTRY NAME IN THIS PROCESS

In a Process definition, an ENTRY Primitive was defined twice with

the same label. A label can occur only once in a Process.

ERROR - ****~ KEYWORD CANNOT BE ASSIGNED NEW VALUE

In the definition of an ASSIGN Primitive in a Process, an attempt was
made to assign a new value to a Keyword other than $CNODE. Only the
$CNODE keyword can be assigned a new value.

##*ERROR - NUMERIC QUANTITY CANNOT BE ASSIGNED A VALUE

In an ASSIGN Primitive of a Process, an attempt was made to assign a
new value to a numeric value. The only entities which can be
assigned a new value are attributes, Variables, and local variables.

ERROR - ******** GLOBAL CONSTANT CANNOT BE ASSIGNED A NEW VALUE

In the definition of an ASSIGN Primitive in a Process, an attempt was
made to assign a new value to a global Constant. The only entities
which can be assigned a new value are attributes, Variables, and
local variables.

ERROR - NOT RECOGNIZED AS A LOGICAL RELATION

In the definition of a COMPARE Primitive in a Process, the relation
field was invalid. Valid relations are EO, NE, GE, GT, LE, and LT.

ERROR - IS NOT RECOGNIZED AS AN ARITHMETIC OPERATION OR A
LOCAL VARIABLE

In the definition of an EVAL Primitive in a Process, the function
specified was invalid. The function field can also contain the name
of a local variable which is a reference to a defined Table.

ERROR - A GLOBAL CONSTANT NUMERIC OR KEYWORD CANNOT BE ASSIGNED
TO

In the definition of an EVAL Primitive in a Process, a global
Constant, numeric or a keyword was specified in the set variable

B-5

field. The only entities which can be assigned a new value by an
EVAL are global Variables and local variables.

00* ERROR - 4** NMFRIC REFEPFNCE INVALID IN PROCESS FIELD

In the definition of a SEND Primitive in a Process, the Process field
contained a numeric reference. The Process field must contain a
reference of a defined Process.

##4# ERROR - * REFERENCE INVALID IN ITEM FIELD

In the definition of a SEND Primitive in a Process, the list of Items
to be sent to a Process contained an invalid value. Only Items can
be sent to a Process.

In the definition of a CREATE Primitive in a Process, the list of
Items to be created included an invalid value. Only Items can be
created by a CREATE Primitive.

In the definition of a DESTROY Primitive in a Process, the list of
Items to be destroyed included an invalid value. Only Items can be
destroyed by a DESTROY Primitive.

In the definition of a FILE Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name of
a reference to a defined Item.

In the definition of a FIND Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name of
a local variable to be set.

In the definition of a REMOVE Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name of
a variable to be set.

.### ERROR - * INVALID QUEUE OPTION

In the definition of a FILE Primitive in a Process, the option field
contained an invalid option. The valid options are FIRST, LAST,
NEXT, and BEFORE.

In the definition of a FIND Primitive in a Process, the option field
contained an invalid option. The valid options are FIRST, LAST,
NEXT, and BEFORE.

In the definition of a REMOVE Primitive in a Process, the option
field contained an invalid option. The valid options are FIRST,
LAST, and NEXT.

ERROR - * REFFRENWE INVALID IN QUEUE FIELD

In the definition of a FILE Primitive in a Process, the queue field
contained an invalid value. The queue field must :ontain the name of
a reference to a defined Queue.

B-6

In the definition of a FIND Primitive in a Process, the queue field
contained an invalid value. The queue field must contain the name of
a reference to a defined Queue, or the name of a valid
cross-reference set: Action, Constant, Item, Process, Queue,
Resource, Table, or Variable.

In the definition of a REMOVE Primitive in a Process, the queue field
contained an invalid value. The queue field must contain the name of
a reference to a defined Queue.

ERROR - *****- RESUMNE REFERENCE MUST NOT BE NUMERIC OR GLOBAL

In the definition of the RESUME Primitive, a numeric value or a
Constant or Variable was encountered in the Process field. This
reference must be a local variable.

###- ERROR - TRACE MODE MUST BE EITHER 'ON' OR 'OFF'

In the definition of a TRACE Primitive, the ON/OFF field contained a
value other than "ON" or "OFF". These are the only valid values.

ERROR - LOAD NODE IS NOT RECOQVIZED AS A RESOURCE

In the definition of a Woad entity, a value was encountered in a node
field which was not a reference to a defined Resource. Nodes must be
Resources.

ERROR - IS NOT DEFINED AS A PRCESS

in the definition of a Load, the name specified in the process field
was not defined as a Process. The name specified in this field must
be a defined Process.

ERROR - ***** IS NOT A LOAD DISTRIBUTION FUNCTION

In the definition of a LOAD, the name specified in the schedule field
was not a valid Load distribution.

ERROR- IS NOT DEFINED AS A CONSTANTr OR VARIABLE

In the definition of a Load, a non-numeric value in the rate field
was not defined as a global Constant or variable. If the rate field
contains a non-numeric value, it must be a defined global Constant or
Variable.

in the definition of a Load, a non-numeric value in the mean field
was not defined as a global Constant or Variable. If the mean field
contains a non-numeric value, it must be a defined global Constant or
Variable.

In the definition of a Load, a non-numeric value in the delta field
was not defined as a global Constant or Variable. if the delta field
contains a non-numeric value, it must be a defined global Constant or
Variable.

B-7

In the definition of a Load, a non-numeric value in the priority
field was not defined as a global Constant or Variable. If the
priority field contains a non-numieric value, it must be a defined
global Constant or Variable.

ERROR - NO SCENARIO DEFINED

No Scenario was defined. There must be a Scenario defined in order
to run a simulation on a model.

ERROR - PERIOD NOT DEFINED

In the definition of a Scenario, the period was not defined. The
period length for a Scenario can be a numeric value or a defined
Constant.

ERROR - TRIGGER ***** NOT DEFINED AS A LOAD OR PROCESS

In the definition of a Scenario entity, a value in the trigger field
was not a Load or Process. Scenario triggers must be either Lo0ads or
Processes.

WARNING -'**** DISTRIBUTION ONLY REQUIRES 1 PARAMETER

In the definition of an ACTION Primitive in a Process, the specified
distribution required only one parameter, but two were supplied. The
extra parameter should be deleted or the distribution should be
changed.

4### WARNING NOT LEGAL. USING D INSTEAD.

An illegal Table type was specified. The Table is being assumed to
be discrete. The valid table types are continuous (c), discrete (d),
and~ alpha (a).

WARNING - ATT'RIBUTE INITIAL VALUE IS NOT DEFINED

In the definition of an Item, Process, or Resource an attribute was
not assigned an initial value or was assigned an invalid value.
Attributes must be initialized.

WARNING - BLANK PRIORITY FIELD ASSUMES PRIORITY 0

In the definition of a CALL Primitive of a Process, the priority
field was left blank. The priority is assumed to be zero.

In the definition of a LOAD entity, the priority field was left
blank. The priority is assumed to be zero.

In the definition of a Scenario entity, the priority field was left
blank. The priority is assumed to be zero.

#**WARNING - IS AN ILLEGAL OPTION. USING NCOJAIT INSTEAD.

B-8

.

-. ,. - .. ,-.. - ' -' . - . - . •. . -

In the definition of a CALL Primitive of a Process, the option field
contained an invalid option; a NOWAIT option is being assumed. The
valid options are BLOCK, WAIT, and NOWAIT.

WARNING - ' IS NOT RECOGNIZED IN THIS CONTEXT

In the definition of an ASSIGN Primitive of a Process, an attempt was
made to assign a numeric value or a Constant or Variable, but there
was also a value in the qualifier field. The qualifier is being
ignored.

In the definition of an ASSIGN Primitive in a Process, an attempt was
made to assign a value to the $CNODE keyword, or an attempt was made
to assign a value to a Variable, but there was also a value in the
qualifier field. The qualifier is being ignored.

WARNING - - NO QUALIFICATION RECOGNIZED FOR IDENTIFICATION

In the definition of a COMPARE Primitive in a Process, a
unrecognizable qualifier for a numeric, a global Variable, or a
global Constant was encountered. Qualifiers are allowed only for
Items, Processes, Resources, and certain keywords.

WARNING - * IS NOT RECOGNIZED IN THIS CONTEXT FOR FUNCTION

In the definition of an EVAL Primitive in a Process, operands were
specified with a randam function or a second operand was specified
for a function which only required one operand.

WARNING - * IS NOT AN ACTION DISTRIBUTION - USING CONSTANT

In the definition of an ACTION primitive in a Process, the value in
the method field was not a valid Action distribution; the
distribution is being assumed to be CONSTANT. The valid
distributions are exponent, constant, lognormal, normal, uniform,
Weibull, gamma, and Erlang.

If an execution error occurs during the simulation, execution will halt
and an error message will be printed in the statistical sumary. In same
cases there may be a Simscript 11.5 traceback. This traceback is a
hexadecimal formatted report which is to be disregarded by the user.
Following the error messages, the statistical summary lists the state of
the Process which was executing when the error occurred. The value of all
local variables and attached attributes for the Process are listed. All
other output reports are also generated.

Following are all of the execution errors which are produced and an
explanation of the conditions which cause each error.

EXECUTION ERROR DETECTED IN PROCESS *

An error occurred in the specified Process which caused an abnormal
termination of the simulation.

B-9

* - .W. -

EXECUT ION ERROR -BRANCH PROBABILITY FOR CURRENT
STATEM4ENT IS NOT A NUMBER

The BRANCH probability in a BRANCZH Primitive in a Process does not
evaluate to a num~ber.

EXECUTION ERROR - LOOP NUMBER FOR CURRENT

STATEMENT IS NOT A NUMIBER

The value of the LOOP counter in a Process is not a num~ber.

EXECZUTION ERROR - TEST STATEMENT ENTITY IS
NOT A RESOURCE OR QUEUE

The value to be tested by a TEST Primitive in a Process is not a
Resource or a Queue. The TEST Primitive can only test a Resource or
a Queue.

*## EXECTION ERROR - VALUE OF RESET IN CURRENT
STATEMENT IS NOT A NUMBER

The value for the numiber of units to be reset by a RESET Primitive is
not a numiber. The value for the number of units to be reset must
evaluate to a numnber.

EXECUTION ERROR - ATTEMPT TO RESET # OF RESOURCE
UNITS OUTSIDE OF LEGAL LIMITS

An attempt was made to reset a numnber of Resource units which would
make the number of units inactive or active greater than the total
number of units which were defined for this Resource.

EXEUTION ERROR - VALUE OF UNITS REQUESTED IN CURRENT
STATEMENT IS NOT A NUM4BER

The units field in an ALLOZ Primitive did not resolve to a number.
This field must resolve to a numnber.

EXECUTION ERROR - VALUE OF PRIORITY IS NOT LEGAL

The Priority field in an ALLCC Primitive did not resolve to a numiber.
This field must resolve to a numiber.

#####EXECTION ERROR - VALUE OF UNITS TO BE RELEASED IN CURRENT
STATEMENT IS NOT A NUMBER

The units field in a DEALLOC Primitive did not resolve to a number.
This field must resolve to a number.

EXECUT7ION ERROR - RESUME ATM PTS TO RESUME A PROCESS WHICH
IS NOT SUSPENDED

An attempt was made to resume a Process instance which was not
suspended.

B-1 0

EXECUTION ERROR -A REFERENCE IN THE CURRENT PROCESS EVALUATES TO
AN ILLEGAL TYPE FOR THE CURRENT STATEMENT

The Resource field in a RESET Primitive did not resolve to a
Resource. This field must resolve to a defined Resource entity.

The Resource field in an ALLOC Primitive did not resolve to a
Resource. This field must resolve to a defined Resource entity.

The Resource field in a DEALLOC Primitive did not resolve to a
Resource. This field must resolve to a defined Resource entity.

EXEXI~rION ERROR - AN ACTION REFERENC~E DOES NOTI EVALUATE TO A NUMIBER

The scheduling time or the scheduling delta time for an action does
not evaluate to a number.

EXEXLITIION ERROR PRIMITIVE REFERENCXE DOES NOT EVALUATE TO AN ACTION

An undefined opcode for a Primitive was encountered. The opcode was
assumed to be the name of a reference to an Action, but it did not
resolve to a defined Action name.

EXECUTION ERROR - PROCESS IN.CURRENT CALL STATEMENT IS NOT DEFINED
AS A PRCESS

An attemipt was made by a CALL Primitive to initiate a Process which
was not defined. The Process name in a CALL Primitive must be a
reference to an entity defined as a Process.

EXECTION ERROR - PRIORITY IN CALL DOES NOTr EVALUATE TO A NUMBER

The priority in a CALL Primitive did not evaluate to a number. The
priority for calling a Process must evaluate to a number.

###EXECTrION ERROR - DISAGREEMENT IN NUMBER OF GIVEN PARAMETERS BETIWEEN
CURRENT CALL STMT AND CALLED PROCESS

The number of given parameters in a CALL Primitive differs from the
number of given parameters in the definition of the Process to be
called. These parameters must correspond.

EXECUTION ERROR - DISAGREEMENT IN NUMBER OF RETURN4 PARAMETERS BE74EE
CURRENT CALL S'TMT AND CALLED PRCESS

The number of return parameters in a CALL Primitive differs fran the
number of return parameters in the definition of the Process to be
called. These parameters must correspond.

#*#EXECUT~ION ERROR - ORDER RELATIONS ARE NOT DEFINED FOR Ca4PARE TYPES

For the non-numeric types being comipared, an invalid relation was
specified. The only valid relations for these types is equal or not
equal.

B-l11

###EXECUTION ERROR -EVAL VARIABLE DOES NOT EVALUATE TO A NUMBER

One of the variables in an EVAL Primitive for a function other than a
Table does not evaluate to a numTber.

EXECUTION ERROR - EVAL FUNCTION IS NOT RECZOGNIZED AS AN
ARITHMETIC OPERATOR OR A TABLE REFERENCE

The reference for the function in an EVAL Primitive is not a legal
arithmnetic function or a reference to a defined Table.

###EXECUTION ERROR - EVAL VARIABLE FOR DISCREET OR CONTINUOUS TABLE
DOES NOT EVALUATE TO A NUMBER

In an EVAL Primitive which is being used to look up a value in a
Table, the value used to index into the Table, the x value, does not
evaluate to a numiber.

EXECUTION ERROR - ILLEGAL ASSIGN: CURRENT NODE
MUST BE .:ET TO A RESOURCE

An EVAL Primitive attempted to set the current node to a reference
which was not a defined Resource. The current node must be a
Resource.

EXECUTION ERROR - ASSIGN ATTEMPTS TO MODIFY A QUALIFIED
TYPE FOR WHICH NO ATTVRIBUTE IS DEFINED

An attempt was made to assign a new value to an attribute of an
entity for which no attributes can be defined. Only Processes,
Resources, and created Itemis have attributes which can be modified.

EXECUTION ERROR - ATT'RIBUTE NOT DEFINED FOR ITEM

An attemtpt was made to assign a new value to a nonexistent attribute
of an Item.

EXECUTION ERROR - ATTRIBUTE NOT DEFINED

An attem~pt was made to assign a new value to a nonexistent attribute

of a Process or a Resource.

EXECUTION ERROR - ASSIGN ATTEM!~PTS TO MODIFY A TYPE WHICH CANNOT BE
MOVDIFIED

An attempt was made to assign a new value to an entity which cannot
be modified; i.e., a global Constant, a numnber, or a keyword other
than $CNODE.

EXECUTION ERROR - A T74pT TO CREATE AN ENTITY
WHICH IS NOT AN ITEM

An attemipt was made to create an entity which is not an Item. Only
references to Items may be in the create list of the CREATE
Primitive.

B-1 2

#*##EXEUTION ERROR -ATTEM PT TO DESTROY AN ITEM WHICH IS
CURRENTLY FILED ON A QUEUE

An attempt was made to destroy an Item which had been filed on a
Queue and not removed before execution of the DESTROY Primitive.

EXECUTION ERROR - CURRENT PROCESS A TEMPTS TO DESTROY AN ITEM'
WHICH IS NOT DEFINED OR DOES NOT EXIST

An attempt was made to destroy an Item which was not defined or
created, or which has already been destroyed.

EXEUTION ERROR - PROCESS FIELD IN SEND STATEMIENT IS NOT
DEFINED AS A PROCESS

The reference in the Process field of a SEND Primitive was not
resolved as a Process. Items can only be sent to a defined Process.

#####EXECUTrION ERROR - ATTEM4PT TO SEND AN ITEMI WHICH IS
CURRENTLY FILED ON A QUEUE

An attempt was made to send an Item which is currently filed on a
Queue to another Process before the Item was removed fromn the Queue.

#.### EXECUTION ERROR - CURRENT PROCESS ATTEMPTING TO SEND A ENTITY
WHICH IS NOT DEFINED AS AN ITEMI

An attempt was made by a SEND Primitive to send an entity other than
an Item to a Process. Only references to Items may be specified in
the SEND Primitive to be sent to Processes.

EXECUtTION ERROR - ITEM ******** ATTEMPTl~ TO BE RECEIVED BY PROCESS
*******IS NOT IN PROCESS NEED LIST

An attempt was made to cause a Process to receive an Itemn which was
not on the list of Items which the Process should receive.

EXECUT~ION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ENTITY
WHICH CANNOT BE FILED

An attempt was made by a FILE Primitive to file an entity which
cannot be filed. Only Items can be filed.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
ON AN UNDEFINED QUEUE

An attempt was made to FILE an Item on a Queue which was not defined.
The queue reference in the FILE primitive must resolve to a defined
Queue.

EXECTION ERROR - CURRENT PROCESS Arr1PTS TO FILE AN ITEM
WHICH IS ALREADY ON A QUEUE

An attempt was made to refile an Item. An Item can be filed on only
one Queue at any given time.

B-1 3

EXECUTION ERROR - CURRENT PROCESS ATTEMPrS TO FILE AN ENTITY
BEFORE OR AFTER AN UNDEFINED ENTITY

An attempt was made to file an entity before or after an entity which
did not exist on the Queue.

EXECUTION ERROR - CURRENT PROCESS ATrTEMPTING TO REMOVE
AN ITEM FR(M AN UNDEFINED QUEUE

An attempt was made to remove an entity frcm an undefined Queue.

EXECUTION ERROR - CURRENT PROCESS ATtEMPTING TO REMOVE
'NEXT' ITEM WHICH DOES NOT EXIST

An attempt was made to remove a non-existent current Item from a
Queue.

EXEUTION ERROR - A REFERENCE FOR A QUEUE IN A FIND PRIMITIVE
IS NOT DEFINED AS A QUEUE OR XREF SET

An invalid reference was specified in a FILE Primitive as the queue
name. Only Queues or cross reference sets are valid for the Queue
name field.

EXECUTION ERROR - * ATTRIBUTE OF A RESOURCE IS NOT DEFINED

An attempt was made to reference a non-existent attribute of a
Resource. Valid attributes are NIDLEQ, NBUSYQ, NWAITQ, NINACTQ, as
well as user-modifiable attributes.

EXECUTION ERROR - ******* ATIRIBUTE OF A RESOURCE UNIT NOT DEFINED

An attempt was made to reference a non-existent attribute of a
Resource unit. Valid attributes are NIDLEQ, NBUSYQ, NWAITQ, NINACTQ,
as well as user-modifiable attributes.

EXECUTION ERROR - ******** ATTRIBUTE OF A PROCESS IS NOT DEFINED

An attempt was made to reference a non-existent attribute of a
Process.

EXECUTION ERROR - * ATTRIBUTE OF A TASK IS NOT DEFINED

An attempt was made to reference a non-existent attribute of a Task.

EXECUTION ERROR - ******* ATTRIBUTE OF A QUEUE NOT DEFINED

An attempt was made to reference an invalid attribute of a Queue.
The valid attributes are NQUEUE and TQUEUE.

EXECUTION ERROR - ******* ATTRIBUTE IS NOT DEFINED FOR CURRENT
ITEM REFERENCE ******* IN EXECUTING LOGIC

An attempt was made to reference a non-existent attribute of an Item.

B-14

. ..

EXECUTION ERROR - ATTRIBUTE SPECIFIED FOR A TYPE
FOR WHICH NO ATTRIBUT~ES CAN BE DEFINED

An attempt was made to reference an attribute of a type which does
not have attributes. Entities which have attributes are Resources,
Processes, and I tems.

EXECUTrION ERROR - KEYWORD REFERENC1E IS BLANK

When the simulator tried to resolve a Keyword, the reference field
for the parameter was found to be blank.

#*EXEC2UTION ERROR - PROCZESS NODE HAS NOT BEEN DEFINED

An attempt was made to reference the process node of a Process, but
the node was not defined.

**#EXECUTION ERROR - REFERENCE FOR $ NODE IS NOT A PROCESS

When the simulator tried to resolve the Keyword $NODE, the reference
das not a Process.

***EXECTYION ERROR - ROUTYE SET ERROR - NO PATH IN NETIWORK

When the simulator tried to resolve $NXTNODE or $LINK, there was no
valid path defined in the LPT.

EXECUT'ION ERROR - CNODE FOR EXECZUTING PROCESS NOT DEFINED

When the simulator tried to resolve a link or a next node, there was
no current node defined for the executing Process.

ERROR - ILLEGAL TYPE

In a Process which was executing when an abnormal termination of the
simulat 4 n occurred, a local variable was of an invalid type.

ERROR - ILLEGAL ATTRIBUTE TYPE

In a Process which was executing when an abnormal termination of the
simulation occurred, a local variable which resolved to an Item, a
Process, or a Resource had an invalid attribute.

#*WARNING - ALPHA TABLE LOOKUP FAILED

In an EVAL Primitive being used to look up a value in an alpha Table,

a value was not found which corresponded to the lookup index value.

*#*WARNING - EM PTY TABLE DETECTED

A Table was encountered which did not have any entries in it.

B-i15

SIMULATOR ERROR IN COMPUTING NEXT TIME ON
METHOD = ******** REFI = ******** REF2 = ******** STREAM =

An error occurred when an attempt was made to compute the next time
in the simulation.

INTERNAL SIM ERROR TRYING TO SUSPEND MORE UNITS OF
*******THEN

An error occurred when an attenpt was made to deallocate units of a

suspended Process instance.

SIMULATOR ERROR - QUEUE.START ATTEMPT TO FILE UNSUCCESSFUL

The simulator attempted to restart tasks blocked fram a Queue when
there were no tasks currenty blocked.

B-16

...
-'--. '.-.' €.'-.'-".-','-.'-" ." ".' ." "''." -''.'-''." " ';' .''.-. .- '-.-..'..-........"....-..-............-..-"-.-'..-..'- .--.-.. -"..

APPENDIX C

GLOSSARY

ACTION -A discrete event that consumes time during a simulation run.

ANALYSIS USER INTERFACE (AUI) - The interface between the user and the
AISIM simulator.

ANALYSIS USER INTERFACE (AUI) READY STATE - Any time after the Analysis
User Interface has been invoked, except during a simulation period. This
state is indicated by the "*" pranpt.

ARCHITETURE DESIGN EDITOR (ADE) - A sublevel of the DUI which provides
the user with the graphics commands to construct a system architecture.

ARCHITECTURE DESIGN EDITOR (ADE) MENU - A representation of the valid
symbols available to the user during an ADE session for building an
architecture. See ADE MENU.

ARCHITECTURE DESIGN EDITOR (ADE) READY STATE - The state of the system
while in the ADE that allows the user to enter cammands. This state is
indicated by the "#" prompt.

ATTRIBUTE - The specific characteristic of a defined entity.

ATTRIBUTE FORM - A list of available attributes from which the user must
select one attribute to be used for testing or data sampling.

BLOCK - Used in conjunction with the CALL Primitive (see section 3.9.5) to
indicate that the calling task is to call the specified task and wait
until all associated tasks are caplete before continuing.

BREAKPOINT - A user-specified condition which, when reached, suspends the
simulation to allow the user to monitor the current state of the
simulation.

CONSTANT - A value that is not subject to change once a simulation run has
been started.

DATABASE - The accumulation of data in a specified form related to a
specific function or operation.

DEFAULT CONDITION - The condition that exists if no parameters are
explicitly stated.

DESIGN USER INTERFACE (DUI) - The interface that allows the user to create
or modify a design database.

C-1

DESIGN~ USER INTERFACE (DUI) READY STATE -Any time after invocation of the
Design User Interface, except when utilizing the PEI or ADE Sublevels of
the DUI. This state is indicated by the "'" prompt.

ENTITY - A predefined set of constructs that have user defined attributes
(see section 3 for valid AISIM entities). They are the "building blocks"
with which the user creates his model.

ENTITY-NAME - The user-defined nam~e of a valid entity.

ENTITY-TYPE - A type as opposed to a specific, user-defined instance of an
entity.

FORMS MODE - A specific function that provides areas which may be filled
in by the user, and protected fields which define the areas to be filled
in.

INFINI'r, RESOURCES - A feature which allows the simulator to simulate a
Process as if there were no limit to the number of Resources available to
it.

WAD - The amount of activity to be applied to the simulation of a
process.

L-NODE - A leaf node in an architecture which typically represents an
external load on the system.

MODEL - A group of AISIM entities which represent a certain function or
group of functions.

NOWAIT - Used in conjunction with the CALL Primitive to indicate that a
Process is to be called by a parent Process and the parent Process is to
continue processing in parallel.

OFF-SCREEN -The portion of a graphics picture not visible to the user.

ON-SCREEN -The portion of a graphics picture visible to the user.

PERMIANENT DATABASE (sometimes referred to as the Design database) - The
user-named database, in which the data for a modeled system resides. (As
opposed to the working database which temporarily holds Design data while
editing that data).

PRIMITIVE - The model entity used to model individual steps in an
operation or function. A Process is constructed from a sequence of
Primitives.

PROCESS - A graphical representation of a sequence of events, activities
and decisions that models a real-world operation or function.

PROCESS EDITOR INTERFACE (PEI) -A sublevel of the DUI that provides the
user with the graphics commands to construct Processes.

c-2

APPENDIX D

MESSAGE ROUTING SUBMODEL

The message routing submodel provides a means for a user to route messages
through a network which is defined by an architecture and a Legal Path
Table.

The message routing submodel consists of one Item representing the message
dispatched through the system architecture, four Processes representing
the activities required for the inter-node communication and other
supporting entities. Everything required for this model is included in
the AISIM system library and can be merged into a user's model in a simple
operation. (See the Library User Interface, section 10).

Although intra-node camunication is modeled by means of a collection of
four Processes, the user need explicitly invoke with a CALL Primitive (see
section 3.9.5) only one of then. To represent the intra-Node triggering
of a Process one calls the first Process in the sukmodel called "MRS".
This process is called using a WAIT option if the user wishes to suspend
the calling Process until message routing suhmodel processing is complete.
It allows the calling Process to wait for a response message to be sent
back to the calling node before it continues processing. If the MRS
Process is called with a NOWAIT option, processing in the message routing
submodel will proceed concurrently with the calling Process.

The calling process must call process MRS with six GIVEN values; no RETURN

values are required. The GIVEN parameters are:

1. the name of the destination process to be triggered,

2. the priority associated with the destination process,

3. the type of message to be generated -- $REQRESP, $REQNORE, or
$RESP. $REQRESP causes a response message to be sent to the
origin, $REQNORE causes no response message to be generated, and
$RESP inhibits both the response message and the triggering of a
destination process,

4. the length of the message,

5. the destination node, and

6. the name of the message item.

The user must also set up attributes of the Resources representing the
nodes and channels (see section 3.6). All nodes which messages utilize

D-1

9 J ° -". m - "o •
o o

h ." ". W" - "• •"
°

•• "• .
'

." •. °- ' •• '-° •- ° °. ". °" ."*. °." . . -.

K-

must have an M.ROUTE attribute which gives the nodal processing delay in
time units per message. Each channel resource must have a RATE attribute
giving a channel transmission delay in time units per character.
The entities that comprise the message routing submodel are described in

the following sections.

Item MSG

This Item is the basic prototype for messages created by the MRS. If the
user does not want specific point-to-point transit times, all statistics
for message routing will be accumulated for this one entity. If specific
point-to-point transit times are desired, the AISIM user copies MSG to
another Item name (through the Design User Interface COPY command
described in section 6.1.2) and provides the unique name as parameter six
in the call to the MRS Process. All attributes of the Item MSG are
essential to the message routing submodel. The attributes are explained
below.

DEFINITION OF ATTRIBUTES FOR ITEM MSG:

Attribute Default Description

Name Value

CNODE $CNODE The current node where the message resides.

FNODE $CNODE The source node of the message.

LENGTH 99999999 The length of the message in bytes.

TYPE $REQNORE The message type. $REQRESP is a request
message requiring a response when the
destination is reached. $REQNORE is a
request message with no response required.
$RESP is a response message.

RPROC $ERROR The destination Process name.

RPROCPRI 99999999 The priority for the destination Process.

TNODE $CNODE The destination node.

D-2

Resources

No Resources are contained in the message routing submodel. However, to
use it, the user must specify an architecture. Each nodal Resource which
messages utilize must have an M.ROUTE attribute which gives the nodal
processing delay in time units per message. Each channel Resource must
have a RATE attribute giving a channel transmission delay in time units
per character.

Actions

Two Action entities are used by the message routing submodel -- ROUTE.OH
and XFER.OH. ROUTE.OH is found in Process NODEPROC and is used for nodal
processing delays while XFER.OH is found in Process CHANPROC for channel
transmission delays.

MESSAGE ROUTING SUBMODEL PROCESSES

The message routing submodel contains four Processes. Details of these
Processes do not have to be known by the user if the submodel can be used
as is. However, if the user needs to make changes, knowledge of how the
processes work is essential. This subsection describes the functioning of
these Processes.

Process MRS

This is the top-level Process of the message routing submodel and is
called when a user wishes to make use of the submodel. It causes a
request message to be generated. Following is a list of the parameters of
this Process.

PROCESS NAME: MRS - Generate a request message and pass it to

NODEPROC.

LOCATION: Executes in all nodes.

GIVEN: PROCESS (DATA TYPE: PROCESS) -- the name of the process to
be initiated in the destination node.

PRIORITY (DATA TYPE: REAL) -- the priority of the

destination process.

MSG.TYPE (DATA TYPE: ALPHA) -- the type of message to be
created. The only legal values for this parameter are:
$REQNORE - a request message is created which -equires no
response, $REQRESP -- a request message is created which will
request a response at its destination, $RESP - used only if
no process is to be initiated in the destination node and no

response is required.

MSG.LNTH (DATA TYPE: REAL) -- the message length.

D-3

"" VRX VERSION USER'.. (U) HUGHES AIRCRRFT CO FULLERTON CR
R-A161 556 RSIM (RUTOMRTED INTEROCTIVE SIMULRTION MODELING SYSTEM) 414

GROUND SYSTEMS GROUP S KNEEBURG FES 65 ESD-TR-B5-12?

UNCLASSIFIED F336t5-81-C-5S98 F/G 9/2 NL, EEEEEEEEEE
6

Lm

2.2.1111 _ -E

1.1.8

MICROCOPY RESOLUTION TEST CHART
NATIONJAL BUREAU OF STANDARS- 1963- A

%

tr7. * w

TO.NODE (DATA TYPE: RESOURCE) - the message destination
node.

MSG (DATA TYPE: ITEM) -- the name of the message item to be
created.

RETURN: None

CALLS: NODEPROC

The Process begins by creating a message and initializing various
attributes of it. The attributes CNODE and FNODE are initialized to the
current node in which the Process is executing. The attribute RPROC is
set to the Process that will be triggered at the message destination node.
The attribute RPROCPRI is set to the priority at which the requested
Process will execute. The attribute TYPE is set to the parameter passed
in MSG.TYPE. The attribute length is set to the length of the message.
The destination node is stored in the TNODE attribute. Process MRS then
calls Process NODEPROC with a WAIT option and gives it the newly created
message. Figure D-1 is a listing of this Process.

D-4

:*r.:.~c. -:- .-

PROCESS
MNEMONIC DESCRIPTION

MRS GENERATE A PROCESS REQUEST MESSAGE AND INITIATE I/O

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL
GIVEN PROCESS PRIORITY MSG.TYPE

MSG.LNTH TO.NOOE MSG
CREATE MSG CREATE MESSAGE
ASSIGN MSG.LNTH SET MESSAGE LENGTH

MSG LENGTH
ASSIGN PROCESS SET PROCESS

MSG RPROC
ASSIGN PRIORITY SET PRIORITY

MSG RPROCPRI
ASSIGN TO.NODE SET DESrTTIN

MSG TNODE
ASSIGN MSG.TYPE SET MESSAGE TYPE

MSG TYPE
CALL NODEPROC WAIT PRIORITY EXECUTIVE SERVICING OF MSG
GIVEN MSG
END

LOCAL VARIABLES OF PROCESS MRS

5 TO.NODE 6 '. (I) 7 NODEPROC (P)

Figure D-1. Listing of Process MRS

D-5

Process NODEPROC

This Process performs nodal processing and determines whether the message
is at its destination. When the Process is called, it is given the
message Item. The following describes the parameters of the Process.

PROCESS NAME: NODEPROC -- Nodal Processing

LOCATION: Executes in all nodes.

GIVEN: MSG (DATA TYPE: ITE4) -- This parameter is the name
of the message item created in process MRS.

RETURN: None

CALLS: CHANPROC, DESTPROC

The first step of this Process is to assign the name of the current node
to a system variable. The processing delay is then calculated and charged
against the current node.

The message's current position is campared with its destination. If the
message is at its destination, the Process determines whether the message
is a request or response message. If it is a request message, the Process
DESTPROC is called with a WAIT option and a priority equal to the
requested priority. The requested Process is initiated in the destination
node by the Process DESTPROC. If the message is a response message, the
Process DESTPROC is called to destroy the message. If the message is not
at its destination node, the Process CHANPROC is called to forward the
message to its next node. Figure D-2 is a listing of this Process.

D-6

,

PROCESS
MNEMONIC DESCRIPTION

NODEPROC NODAL PROCESSING AND ROUTING

ENTRY OPCODE PARM PARM PARM COMMENT
unnuuu~ Zmuasusmam =a===*== ======== lflulU3Zl

START ALL
GIVEN MSC
ASSIGN MSG CNODE INDICATE CURRENT NODE

C.NODE
ASSIGN C.NODE M.ROUTE PROCESSING RATE OF NODE

RTOVHD
ASSIGN MSG LENGTH GET MESSAGE LENGTH

MSC.LNTH
EVAL OVERHEAD MULTIPLY COMPUTE PROCESSING DELAY

MSG.LNTH RT.OVHD
ALLOC C.NODE I ALL ALLOCATE CURRENT NODE

SPRIORTY
ROUTE.OH CONSTANT OVERHEAD DELAY FOR ROUTING
DEALLOC C.NODE I RELEASE C.NOOE TO OTHERS
COMPARE MSG CNODE EQ IS MSG AT DESTINATION?

MSG TNODE CONTROL
CALL CHANPROC WAIT a FORWARD gSG TO CHANNEL
GIVEN USG
BRANCH END 106

CONTROL ENTRY MESSAGE AT DESTINATION
CALL DESTPROC WAIT a CONTEXT SWITCH MESSAGE
GIVEN MSG

END ENTRY
END

LOCAL VARIABLES OF PROCESS NODEPROC

.I US (I) 2 C.NODE 3 MSG.LNTH 4 OVERHEAD (A)
S ROUTE.OH (A) 6 CHANPROC (P) 7 DESTPROC (P)

Figure D-2. Listing of Process NODEPROC

D-7

- . -

Process DESTPROC

This Process models the processing of a message at its destination. It

terminates request messages, generates response messages and triggers the

requested Process. The following describes the parameters of this

Process.

PROCESS NAME: DESTPROC - Destination processing of message items.

LOCATION: Executes in all nodes.

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the message

item created in process MRS. 4

RETURNS: None

CALLS: CHANPROC

This Process determines whether the message is a request or response

message. If it is a response message, this Process destroys the message

and terminates. If the message is a request message, the name of the

requested Process is retrieved from the RPROC attribute of the message,

and the process is initiated. DESTPROC waits until the requested process

completes. Next, DESTPROC checks the message attribute TYPE to see

whether the requesting Process is waiting for a response. If no response

is desired, the message is destroyed and DESTPROC terminates. If a

response is requested, the message type is changed to response, the
destination node is changed to the origin, and the origin is changed to
the current node. Then the Process CHANPROC is called to route the
message back to its origin. Figure D-3 is a listing of this Process.

D-8

PROCESS
MNEMONIC DESCRIPTION

DESTPROC PROCESSING AT DESTINATION OF MESSAGE

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL

GIVEN MSG
ASSIGN MSG CNODE CURRENT NODE

C.NODE
COMPARE MSG TYPE EQ IF RESPONSE, DESTROY

SRESP DESTROY
ALLOC C.NODE I ALL ALLOCATE CURRENT NODE

SPRIORTY
ASSIGN MSG RPROC EXECUTE THE CALLED PROCESS

PROCESS
ASSIGN MSG RPROCPRI SET PRIORITY FOR REQ PROC

PRIORITY
CALL PROCESS WAIT PRIORITY WAIT UNTIL COMPLETE
GIVEN MSG
RETURN MSG
DEALLOC C.NODE 1 DEALLOCATE CURRENT NODE
COMPARE MSG TYPE EQ NO RESPONSE REQ->DESTROY

SREQNORE DESTROY
ASSIGN SRESP CHANGE MSG RESPONSE TYPE

MSG TYPE
ASSIGN MSG FNODE SWITCH FROM AND TO NODES

MSG TNODE
ASSIGN MSG CNODE CURRENT NODE IS FROM NODE

MSG FNODE
CALL CHANPROC WAIT 0 RETURN MESSAGE TO ORIGIN
GIVEN MSG
BRANCH END 100

DESTROY ENTRY TERMINATE MESSAGE AT DEST.
DESTROY MSG TERMINATE MSG

END ENTRY
END

LOCAL VARIABLES OF PROCESS DESTPROC

1 MSG (I) 2 C.NODE 3 PROCESS (X) 4 PRIORITY
5 CHANPROC (P)

Figure D-3. Listing of Process DESTPROC

D-9

• •. , . , .. , -. ° o o - +. .- oo - -.

Process CHANPROC

Process CHANPROC extracts the current node and the destination node from

the message Item. It accesses the LPT to determine the next node and the

connecting channel. The channel is allocated to simulate its use, and the
Process NODEPROC is called. The following describes the parameters of
process CHANPROC.

PROCESS NAME: CHANPROC - full and half duplex channel logic

LOCATION: Executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the
message item created in MRS.

RETURN: None

CALLS: NODEPROC

The first step of this Process is to assign the current node to the system
variable $CNODE and to determine the destination node for the message.
Then the next node and next channel are extracted fran the LPT, and the
channel is allocated. The transfer time for the message is assumed to be
a constant rate. The action XFER.OH simulates the time used to traverse

the channel. The value of the current-node attribute of the message is
changed to the next node to update the message's position, and the system
current node indicator ($CNODE) is also set to the next node. The channel
is then deallocated and the Process NODEPROC is called. Figure D-4 is a
listing of this Process.

D-10

PROCESS
MNEMONIC DESCRIPTION

CHANPROC FULL AND HALF DUPLEX CHANNEL LOGIC

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL
GIVEN MSG
ASSIGN MSG CNODE SET INTERNAL NODE CURRENT

SCNODE
ASSIGN MSG TNODE GET DESTINATION NODE

TO.NODE
ASSIGN SNXTNODE TO.NODE SET NEXT NODE TO DESTN

NXT.NODE
ASSIGN $CHANNEL TO.NODE GET CHANNEL TO NEXT NODE

CHANNEL
ALLOC CHANNEL 1 ALL OBTAIN CHANNEL FOR XFER

SPRIORTY
ASSIGN CHANNEL RATE WHAT IS CHANNEL RATE?

VSPEED
ASSIGN MSG LENGTH MESSAGE LENGTH

VLENGTH
EVAL VM.OVHD MULTIPLY CALCULATE TRANSFER TIME

VSPEED VLENGTH
XFER.OH CONSTANT VM.OVHD DELAY DUE TO TRANSFER TIME
ASSIGN NXT.NODE MSG RESIDES IN NEXT NODE

MSG CNODE
ASSIGN NXT.NODE SET INTERNAL NODE REGISTER

SCNODE
DEALLOC CHANNEL 1 FREE UP CHANNEL AFTER XFER
CALL NODEPROC WAIT a ROUTE MESSAGE 10 NEXT NODE
GIVEN MSG
END

LOCAL VARIABLES OF PROCESS CHANPROC

1MSG (I) 2 TO.NODE 3 NXT.NOOE 4 CHANNEL
S VLENGTH 6 VM.OVHD 7 XFER.OH (A) 9 NODEPROC (P)

Figure D-4. Listing of Process CHANPROC

D-11

., . * * %1...
. ' .. ''.. .- ' .,..... , '...,. .. ' .. ,.-.. '.'." -.. ,". ., ,. . .,., .. .- ,-'- ,...-.'

FILMED

• 1,
D I4

Ti C
A. W.eD TIP,

